• 제목/요약/키워드: Collaborative Performance

검색결과 641건 처리시간 0.024초

CLOUD BIM 기반 설계 프로세스에서 설계정보의 구조화 및 성능지향적 설계서비스를 통한 협업설계 지원 방안 (A Study on Collaborative Design System using Design Issue Modeling and Performance-oriented Design Service in CLOUD BIM based Design Process)

  • 정재환;김진웅;송유미;김성아
    • 한국BIM학회 논문집
    • /
    • 제6권1호
    • /
    • pp.9-17
    • /
    • 2016
  • Building information modeling refers to combination or set of technologies and organizational solutions that are expected to increase collaboration in the construction industry and to improve the productivity and quality of the design, construction, and maintenance of buildings. For enhanced communication among project participants, various information which BIM model usually includes is provided, furthermore data which contain exchange of unstructured information is needed. If the extension of BIM standard file format for practical use of design Issue information about collaborative design process is fulfilled, the productivity and quality of design will be improved.

개인별 상품추천시스템, WebCF-PT: 웹마이닝과 상품계층도를 이용한 협업필터링 (A Personalized Recommender System, WebCF-PT: A Collaborative Filtering using Web Mining and Product Taxonomy)

  • 김재경;안도현;조윤호
    • Asia pacific journal of information systems
    • /
    • 제15권1호
    • /
    • pp.63-79
    • /
    • 2005
  • Recommender systems are a personalized information filtering technology to help customers find the products they would like to purchase. Collaborative filtering is known to be the most successful recommendation technology, but its widespread use has exposed some problems such as sparsity and scalability in the e-business environment. In this paper, we propose a recommendation system, WebCF-PT based on Web usage mining and product taxonomy to enhance the recommendation quality and the system performance of traditional CF-based recommender systems. Web usage mining populates the rating database by tracking customers' shopping behaviors on the Web, so leading to better quality recommendations. The product taxonomy is used to improve the performance of searching for nearest neighbors through dimensionality reduction of the rating database. A prototype recommendation system, WebCF-PT is developed and Internet shopping mall, EBIB(e-Business & Intelligence Business) is constructed to test the WebCF-PT system.

APMDI-CF: An Effective and Efficient Recommendation Algorithm for Online Users

  • Ya-Jun Leng;Zhi Wang;Dan Peng;Huan Zhang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제17권11호
    • /
    • pp.3050-3063
    • /
    • 2023
  • Recommendation systems provide personalized products or services to online users by mining their past preferences. Collaborative filtering is a popular recommendation technique because it is easy to implement. However, with the rapid growth of the number of users in recommendation systems, collaborative filtering suffers from serious scalability and sparsity problems. To address these problems, a novel collaborative filtering recommendation algorithm is proposed. The proposed algorithm partitions the users using affinity propagation clustering, and searches for k nearest neighbors in the partition where active user belongs, which can reduce the range of searching and improve real-time performance. When predicting the ratings of active user's unrated items, mean deviation method is used to impute values for neighbors' missing ratings, thus the sparsity can be decreased and the recommendation quality can be ensured. Experiments based on two different datasets show that the proposed algorithm is excellent both in terms of real-time performance and recommendation quality.

Online Collaborative Language Learning for Enhancing Learner Motivation and Classroom Engagement

  • Jeong, Kyeong-Ouk
    • International Journal of Contents
    • /
    • 제15권4호
    • /
    • pp.89-96
    • /
    • 2019
  • This study examines the impact of online collaborative English language learning to enhance learner motivation and classroom engagement in university English instruction. The role of learner motivation and classroom engagement has gained much attention under the premises of current constructivist framework of English as a foreign language education. To promote learner motivation and classroom interaction in English instruction, participants in this study engaged in integrative English learning activities through online group collaboration and peer-tutoring. They exchanged productive peer response and shared their learning experiences throughout the integrative English learning activities. Digital technology played an integral role in motivating the learning process of the participants. Data for this study were gathered through an online questionnaire survey and semi-structured interviews. The data were analyzed based on the ARCS motivational model of instructional design to identify the motivational aspects of integrative English learning activities. This study reveals that participants of this study regarded online collaborative English learning activities as the positive and motivating learning experience. The online collaborative English reading instruction had positive effect on improving EFL university students' learning performance. Participants of this study also identified affective and metacognitive benefits of online collaborative EFL learning activities for learner motivation and classroom engagement. This study reveals that the social networking platform in online group collaboration played a crucial role for the participants in understanding the integration of online group collaboration as the positive and effective language learning strategy. This study may have implications in suggesting the effective instructional design for promoting learner motivation and classroom interaction in EFL education.

What is Monitored and by Whom in Online Collaborative Learning?: Analysis of Monitoring Tools in Learner Dashboard

  • LIM, Ji Young;CHOI, Jisoo;KIM, Yoon Jin;EUR, Jeongin;LIM, Kyu Yon
    • Educational Technology International
    • /
    • 제20권2호
    • /
    • pp.223-255
    • /
    • 2019
  • The purpose of this study is to draw implications for designing online tools to support monitoring in collaborative learning. For this purpose, eighteen research papers that explored learner dashboards and group awareness tools were analyzed. The driving questions for this analysis related to the information and outcomes that must be monitored, whose performance they represent, and who monitors the extent of learning. The analytical frameworks used for this study included the following: three modes of co-regulation in terms of who regulates whose learning (self-regulation in collaborative learning, other regulation, and socially shared regulation) and four categories of dashboard information to determine which information is monitored (information about preparation, participation, interaction, and achievements). As a result, five design implications for learner dashboards that support monitoring were posited: a) Monitoring tools for collaborative learning should support multiple targets: the individual learner, peers, and the entire group; b) When supporting personal monitoring, information about the individual and peers should be displayed simultaneously to allow direct comparison; c) Information on collaborative learning achievements should be provided in terms of the content of knowledge acquired rather than test scores; d) In addition to information related to interaction between learners, the interaction between learners and learning materials can also be provided; and e) Presentation of the same information to individuals or groups should be variable.

협업 계층을 적용한 합성곱 신경망 기반의 이미지 라벨 예측 알고리즘 (Image Label Prediction Algorithm based on Convolution Neural Network with Collaborative Layer)

  • 이현호;이원진
    • 한국멀티미디어학회논문지
    • /
    • 제23권6호
    • /
    • pp.756-764
    • /
    • 2020
  • A typical algorithm used for image analysis is the Convolutional Neural Network(CNN). R-CNN, Fast R-CNN, Faster R-CNN, etc. have been studied to improve the performance of the CNN, but they essentially require large amounts of data and high algorithmic complexity., making them inappropriate for small and medium-sized services. Therefore, in this paper, the image label prediction algorithm based on CNN with collaborative layer with low complexity, high accuracy, and small amount of data was proposed. The proposed algorithm was designed to replace the part of the neural network that is performed to predict the final label in the existing deep learning algorithm by implementing collaborative filtering as a layer. It is expected that the proposed algorithm can contribute greatly to small and medium-sized content services that is unsuitable to apply the existing deep learning algorithm with high complexity and high server cost.

클러스터링 기반 협업 필터링 알고리즘을 사용한 분산 추천 시스템 (Distributed Recommendation System Using Clustering-based Collaborative Filtering Algorithm)

  • 조현제;이필규
    • 한국인터넷방송통신학회논문지
    • /
    • 제14권1호
    • /
    • pp.101-107
    • /
    • 2014
  • 본 논문에서는 협업 필터링 알고리즘을 클러스터링 기반으로 분산 환경에서 구현하여, 추천을 위한 수행 시간을 최적화 하는 방법에 대한 제안을 한다. 하둡 기반으로 시스템을 구성하였고, 분산 Min-hash 클러스터링 기반의 협업 필터링 방법을 제안하고, 이를 기반으로 분산 추천 시스템을 구성하였다. 분산 사용자 기반 협업 필터링 기법을 사용하여 무비렌즈 (Movie Lens)의 영화 평점 데이터를 기반으로 각각의 사용자에게 알맞은 영화를 추천해주는 분산추천 시스템을 구현하고 실험을 통하여 성능의 우수성을 검증하였다.

Design and Implementation of a User-based Collaborative Filtering Application using Apache Mahout - based on MongoDB -

  • Lee, Junho;Joo, Kyungsoo
    • 한국컴퓨터정보학회논문지
    • /
    • 제23권4호
    • /
    • pp.89-95
    • /
    • 2018
  • It is not easy for the user to find the information that is appropriate for the user among the suddenly increasing information in recent years. One of the ways to help individuals make decisions in such a lot of information is the recommendation system. Although there are many recommendation methods for such recommendation systems, a representative method is collaborative filtering. In this paper, we design and implement the movie recommendation system on user-based collaborative filtering of apache mahout based on mongoDB. In addition, Pearson correlation coefficient is used as a method of measuring the similarity between users. We evaluate Precision and Recall using the MovieLens 100k dataset for performance evaluation.

Policy Adjuster-driven Grid Workflow Management for Collaborative Heart Disease Identification System

  • Deng, Shengzhong;Youn, Chan-Hyun;Liu, Qi;Kim, Hoe-Young;Yu, Taoran;Kim, Young-Hun
    • Journal of Information Processing Systems
    • /
    • 제4권3호
    • /
    • pp.103-112
    • /
    • 2008
  • This paper proposes a policy adjuster-driven Grid workflow management system for collaborative healthcare platform, which supports collaborative heart disease diagnosis applications. To select policies according to service level agreement of users and dynamic resource status, we devised a policy adjuster to handle workflow management polices and resource management policies using policy decision scheme. We implemented this new architecture with workflow management functions based on policy quorum based resource management system for providing poincare geometrycharacterized ECG analysis and virtual heart simulation service. To evaluate our proposed system, we executed a heart disease identification application in our system and compared the performance to that of the general workflow system and PQRM system under different types of SLA.

Merging Collaborative Learning and Blockchain: Privacy in Context

  • Rahmadika, Sandi;Rhee, Kyung-Hyune
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2020년도 춘계학술발표대회
    • /
    • pp.228-230
    • /
    • 2020
  • The emergence of collaborative learning to the public is to tackle the user's privacy issue in centralized learning by bringing the AI models to the data source or client device for training Collaborative learning employs computing and storage resources on the client's device. Thus, it is privacy preserved by design. In harmony, blockchain is also prominent since it does not require an intermediary to process a transaction. However, these approaches are not yet fully ripe to be implemented in the real world, especially for the complex system (several challenges need to be addressed). In this work, we present the performance of collaborative learning and potential use case of blockchain. Further, we discuss privacy issues in the system.