• 제목/요약/키워드: Collaborative Performance

검색결과 641건 처리시간 0.025초

장르별 협업필터링을 이용한 영화 추천 시스템의 성능 향상 (Performance Improvement of a Movie Recommendation System using Genre-wise Collaborative Filtering)

  • 이재식;박석두
    • 지능정보연구
    • /
    • 제13권4호
    • /
    • pp.65-78
    • /
    • 2007
  • 추천시스템은 개인화 서비스를 구현하는 방법 중의 하나이다. 추천시스템은 다양한 기법을 통해 구축될 수 있는데, 최근 전자상거래 분야에서 사용되는 기법들 중에서 대표적인 것이 협업필터링이다. 협업필터링은 영화나 음악 같이 명시적인 속성만으로 그 특성을 기술하는데 한계가 있는 아이템의 추천문제에 효과적으로 적용되어 왔다. 하지만, 이 기법은 희박성, 확장성 및 투명성 등의 문제점을 가지고 있는데, 본 연구에서는 희박성과 확장성 문제를 극복하는 방안으로 장르별 협업필터링 방법을 제안한다. 장르별 협업필터링 방법은 아이템을 최종적으로 추천하기 전에 아이템의 상위 카테고리, 즉 장르에 대한 정보를 활용하는 방법이다. 본 연구에서 제안하는 방법의 실용성을 보이기 위하여, 영화 추천시스템인 GenreWise_CF를 개발하여, 공개 데이터인 MovieLens Data에 적용하여 평가하였다. 실험 결과, 본 연구에서 제안한 GenreWise_CF가 전통적인 협업 필터링을 적용하여 개발한 추천시스템인 Basic_CF보다 향상된 성능을 보였다.

  • PDF

양자정보기술 연구개발의 거대한 물결 (Big Wave in R&D in Quantum Information Technology -Quantum Technology Flagship)

  • 황용수;백충헌;김태완;허재두
    • 전자통신동향분석
    • /
    • 제34권1호
    • /
    • pp.75-85
    • /
    • 2019
  • Quantum technology is undergoing a revolution. Theoretically, strange phenomena of quantum mechanics, such as superposition and entanglement, can enable high-performance computing, unconditionally secure communication, and high-precision sensing. Such theoretical possibilities have been examined in the last few decades. The goal now is to apply these quantum advantages to daily life. Europe, where quantum mechanics was born a 100 years ago, is struggling to be placed at the front of this quantum revolution. Thus, the European Commission has decided to invest 1 billion EUR over 10 years and has initiated the ramp-up phase with 20 projects in the fields of communication, simulation, sensing and metrology, computing, and fundamental science. This program, approved by the European Commission, is called the "Quantum Technology Flagship" program. Its first objective is to consolidate and expand European scientific leadership and excellence in quantum research. Its second objective is to kick-start a competitive European industry in quantum technology and develop future global industrial leaders. Its final objective is to make Europe a dynamic and attractive region for innovative and collaborative research and business in quantum technology. This program also trains next-generation quantum engineers to achieve a world-leading position in quantum technology. However, the most important principle of this program is to realize quantum technology and introduce it to the market. To this end, the program emphasizes that academic institutes and industries in Europe have to collaborate to research and develop quantum technology. They believe that without commercialization, no technology can be developed to its full potential. In this study, we review the strategy of the Quantum Europe Flagship program and the 20 projects of the ramp-up phase.

텍스트 마이닝 방법론과 메신저UI를 활용한 융합연구 촉진을 위한 연구자 및 연구 분야 추천 시스템의 제안 (Researcher and Research Area Recommendation System for Promoting Convergence Research Using Text Mining and Messenger UI)

  • 양낙영;김성근;강주영
    • 한국정보시스템학회지:정보시스템연구
    • /
    • 제27권4호
    • /
    • pp.71-96
    • /
    • 2018
  • Purpose Recently, social interest in the convergence research is at its peak. However, contrary to the keen interest in convergence research, an infrastructure that makes it easier to recruit researchers from other fields is not yet well established, which is why researchers are having considerable difficulty in carrying out real convergence research. In this study, we implemented a researcher recommendation system that helps researchers who want to collaborate easily recruit researchers from other fields, and we expect it to serve as a springboard for growth in the convergence research field. Design/methodology/approach In this study, we implemented a system that recommends proper researchers when users enter keyword in the field of research that they want to collaborate using word embedding techniques, word2vec. In addition, we also implemented function of keyword suggestions by using keywords drawn from LDA Topicmodeling Algorithm. Finally, the UI of the researcher recommendation system was completed by utilizing the collaborative messenger Slack to facilitate immediate exchange of information with the recommended researchers and to accommodate various applications for collaboration. Findings In this study, we validated the completed researcher recommendation system by ensuring that the list of researchers recommended by entering a specific keyword is accurate and that words learned as a similar word with a particular researcher match the researcher's field of research. The results showed 85.89% accuracy in the former, and in the latter case, mostly, the words drawn as similar words were found to match the researcher's field of research, leading to excellent performance of the researcher recommendation system.

빅데이터 기반 추천시스템을 위한 협업필터링의 최적화 규제 (Regularized Optimization of Collaborative Filtering for Recommander System based on Big Data)

  • 박인규;최규석
    • 한국인터넷방송통신학회논문지
    • /
    • 제21권1호
    • /
    • pp.87-92
    • /
    • 2021
  • 빅데이터 기반의 추천시스템 모델링에서 바이어스, 분산, 오류 및 학습은 성능에 중요한 요소이다. 이러한 시스템에서는 추천 모델이 설명도를 유지하면서 복잡도를 줄여야 한다. 또한 데이터의 희소성과 시스템의 예측은 서로 반비례의 속성을 가지기 마련이다. 따라서 희소성의 데이터를 인수분해 방법을 활용하여 상품간의 유사성을 학습을 통한 상품추천모델이 제안되어 왔다. 본 논문에서는 이 모델의 손실함수에 대한 최적화 방안으로 max-norm 규제를 적용하여 모델의 일반화 능력을 향상시키고자 한다. 해결방안은 기울기를 투영하는 확률적 투영 기울기 강하법을 적용하는 것이다. 많은 실험을 통하여 데이터가 희박해질수록 기존의 방법에 비해 제안된 규제 방법이 상대적으로 효과가 있다는 것을 확인하였다.

영화 리뷰의 상품 속성과 고객 속성을 통합한 지능형 추천시스템 (An Intelligent Recommendation System by Integrating the Attributes of Product and Customer in the Movie Reviews)

  • 홍태호;홍준우;김은미;김민수
    • 지능정보연구
    • /
    • 제28권2호
    • /
    • pp.1-18
    • /
    • 2022
  • 디지털 기술이 산업 전반의 전자상거래 시장에 융합되면서 온라인 거래의 활성화와 이용률을 증가시켰으며, 이러한 시장의 흐름은 최근 코로나와 같은 감염병이 확산함에 따라 더욱 가속화되어 다양한 상품 정보를 온라인을 통해 고객들에게 제공할 수 있게 되었다. 다양한 정보의 제공은 고객들에게 다양한 선택의 기회를 제공하지만 의사결정에 어려움을 주기도 한다. 추천시스템은 고객의 의사결정에 도움을 줄 수 있으나 기존 추천시스템 연구는 정량적 데이터만에 국한되어 있으며, 상품 및 고객의 세부적인 요인을 반영하지 못하였다. 이에 본 연구에서는 온라인 리뷰를 기반으로 정성적 데이터를 텍스트 마이닝 기법을 적용하여 상품 및 고객의 속성을 정량화하고 기존의 객관적 지표인 총평점과 감성 및 감정을 통합한 지능형 추천시스템을 제안한다. 제안된 지능형 추천모형은 총평점 위주의 추천 모형보다 우수한 추천성과를 보여주었으며, 상품 및 고객의 세부적 요소를 반영한 추천결과를 통해 새로운 비즈니스 가치를 창출할 것으로 기대한다.

딥러닝을 통한 하이엔드 패션 브랜드 감성 학습 (Deep Learning for Classification of High-End Fashion Brand Sensibility)

  • 장세윤;김하연;이유리;설진석;김성재;이상구
    • 한국의류학회지
    • /
    • 제46권1호
    • /
    • pp.165-181
    • /
    • 2022
  • The fashion industry is creating innovative business models using artificial intelligence. To efficiently utilize artificial intelligence (AI), fashion data must be classified. Until now, such data have been classified focusing only on the objective properties of fashion products. Their subjective attributes, such as fashion brand sensibilities, are holistic and heuristic intuitions created by a combination of design elements. This study aims to improve the performance of collaborative filtering in the fashion industry by extracting fashion brand sensibility using computer vision technology. The image data set of fashion brand sensibility consists of high-end fashion brand photos that share sensibilities and communicate well in fashion. About 26,000 fashion photos of 11 high-end fashion brand sensibility labels have been collected from the 16FW to 21SS runway and 50 years of US Vogue magazines beginning from 1971. We use EfficientNet-B1 to establish the main architecture and fine-tune the network with ImageNet-ILSVRC. After training fashion brand sensibilities through deep learning, the proposed model achieved an F-1 score of 74% on accuracy tests. Furthermore, as a result of comparing AI machine and human experts, the proposed model is expected to be expanded to mass fashion brands.

비대면 교육 환경에서 온라인 협업 툴 사용의도에 영향을 미치는 요인에 관한 연구 (A Study on Factors Affecting Intention to Use Online Collaboration Tools for the Non-Face-to-Face Educational Environment)

  • 서재이;안선주;최정일
    • 품질경영학회지
    • /
    • 제50권3호
    • /
    • pp.571-591
    • /
    • 2022
  • Purpose: The purpose of this study is to examine the factors affecting the intention to use online collaboration tools for non-face-to-face educational environment in the perspective of the learners. Methods: For empirical analysis, the survey of this study was administered with data that were limited to experienced learners using online collaboration tools such as Google Docs, Allo, Padlet, and Slido in online education environments such as Zoom, Webex, MS Teams, etc. and valid 400 data were analyzed by SPSS(ver 22.0) and R(ver 4.1.0) program package. Results: The results of empirical analysis showed that performance expectancy were found to have an effect on reliability of system quality, empathy of service quality, playfulness and informativity of content quality among the characteristics of online collaboration tools. On the other hand, it was found that the security of system quality, responsiveness of service quality, and extroversion of user personality characteristics did not affect. It was analyzed that playfulness had the greatest positive effect, followed by informativity, empathy, and reliability. Among the characteristics of online collaboration tools, it was found that the reliability and security of system quality and informativity of content quality had an effect on the effort expectancy. It was analyzed that informativity has the greatest influence, followed by security and reliability. Conclusion: This study is meaningful in that it examines the perspectives of users and learners, who can be said to be the end customers of online collaboration tools. Based on the results of this study, it is expected that not only platform operators that provide online collaborative tools, but also providers that use online collaboration tools will have a significant impact on the development of edutech and infrastructure in the educational environment.

메타버스 기반 경찰 교육훈련모델 구축 방안에 관한 연구 (A Study on the Establishment of Metaverse-based Police Education and Training Model)

  • 오세연
    • 한국재난정보학회 논문집
    • /
    • 제18권3호
    • /
    • pp.487-494
    • /
    • 2022
  • 연구목적: 본 연구는 시대적 환경의 변화에 따른 경찰의 다양한 활동에 대한 성과를 효율적으로 증진시킬 수 있는 메타버스 기반 경찰교육훈련모델을 제안하고자 한다. 연구방법: HMD과 햅틱기술을 이용하여 표현되는 Avatar Controller를 생성하고, Network Interface에 접속하여 Cloud Education Server에서의 지휘통제모듈과 교육훈련콘텐츠모듈, 분석모듈 등을 통하여 개인 또는 팀 단위로 교육훈련 할 수 있다. 연구결과: 본 연구의 제안모델에서는 개인이나 팀 단위의 메타버스 기반 교육훈련 시 지휘통제모듈을 접목시킴으로써 테러나 범죄 상황 전반에 대하여 지휘감독요원들이 실시간으로 상황을 모니터링하여 지휘통제 하에 대응훈련을 하게 함으로써 팀원들 간의 유기적인 협업훈련도 가능하게 하였다. 결론: 메타버스를 기반으로 한 개인 또는 팀 단위의 경찰교육훈련은 몰입감, 상호작용 그리고 다양한 상황에서의 신속한 판단 등을 바탕으로 현실과 거의 흡사한 환경을 조성함으로써 보다 더 효율적이고 안전적인 교육훈련환경을 제공할 수 있기 때문에 향후 각국에서 메타버스를 기반으로 한 교육훈련 대응모델들은 지속적으로 성장하며 교육훈련에 있어서 새로운 대안으로 제시될 것으로 기대된다.

A Bi-objective Game-based Task Scheduling Method in Cloud Computing Environment

  • Guo, Wanwan;Zhao, Mengkai;Cui, Zhihua;Xie, Liping
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제16권11호
    • /
    • pp.3565-3583
    • /
    • 2022
  • The task scheduling problem has received a lot of attention in recent years as a crucial area for research in the cloud environment. However, due to the difference in objectives considered by service providers and users, it has become a major challenge to resolve the conflicting interests of service providers and users while both can still take into account their respective objectives. Therefore, the task scheduling problem as a bi-objective game problem is formulated first, and then a task scheduling model based on the bi-objective game (TSBOG) is constructed. In this model, energy consumption and resource utilization, which are of concern to the service provider, and cost and task completion rate, which are of concern to the user, are calculated simultaneously. Furthermore, a many-objective evolutionary algorithm based on a partitioned collaborative selection strategy (MaOEA-PCS) has been developed to solve the TSBOG. The MaOEA-PCS can find a balance between population convergence and diversity by partitioning the objective space and selecting the best converging individuals from each region into the next generation. To balance the players' multiple objectives, a crossover and mutation operator based on dynamic games is proposed and applied to MaPEA-PCS as a player's strategy update mechanism. Finally, through a series of experiments, not only the effectiveness of the model compared to a normal many-objective model is demonstrated, but also the performance of MaOEA-PCS and the validity of DGame.

프라이버시를 보호하는 분산 기계 학습 연구 동향 (Systematic Research on Privacy-Preserving Distributed Machine Learning)

  • 이민섭;신영아;천지영
    • 정보처리학회 논문지
    • /
    • 제13권2호
    • /
    • pp.76-90
    • /
    • 2024
  • 인공지능 기술은 스마트 시티, 자율 주행, 의료 분야 등 다양한 분야에서 활용 가능성을 높이 평가받고 있으나, 정보주체의 개인정보 및 민감정보의 노출 문제로 모델 활용이 제한되고 있다. 이에 따라 데이터를 중앙 서버에 모아서 학습하지 않고, 보유 데이터셋을 바탕으로 일차적으로 학습을 진행한 후 글로벌 모델을 최종적으로 학습하는 분산 기계 학습의 개념이 등장하였다. 그러나, 분산 기계 학습은 여전히 협력하여 학습을 진행하는 과정에서 데이터 프라이버시 위협이 발생한다. 본 연구는 분산 기계 학습 연구 분야에서 프라이버시를 보호하기 위한 연구를 서버의 존재 유무, 학습 데이터셋의 분포 환경, 참여자의 성능 차이 등 현재까지 제안된 분류 기준들을 바탕으로 유기적으로 분석하여 최신 연구 동향을 파악한다. 특히, 대표적인 분산 기계 학습 기법인 수평적 연합학습, 수직적 연합학습, 스웜 학습에 집중하여 활용된 프라이버시 보호 기법을 살펴본 후 향후 진행되어야 할 연구 방향을 모색한다.