추천시스템은 개인화 서비스를 구현하는 방법 중의 하나이다. 추천시스템은 다양한 기법을 통해 구축될 수 있는데, 최근 전자상거래 분야에서 사용되는 기법들 중에서 대표적인 것이 협업필터링이다. 협업필터링은 영화나 음악 같이 명시적인 속성만으로 그 특성을 기술하는데 한계가 있는 아이템의 추천문제에 효과적으로 적용되어 왔다. 하지만, 이 기법은 희박성, 확장성 및 투명성 등의 문제점을 가지고 있는데, 본 연구에서는 희박성과 확장성 문제를 극복하는 방안으로 장르별 협업필터링 방법을 제안한다. 장르별 협업필터링 방법은 아이템을 최종적으로 추천하기 전에 아이템의 상위 카테고리, 즉 장르에 대한 정보를 활용하는 방법이다. 본 연구에서 제안하는 방법의 실용성을 보이기 위하여, 영화 추천시스템인 GenreWise_CF를 개발하여, 공개 데이터인 MovieLens Data에 적용하여 평가하였다. 실험 결과, 본 연구에서 제안한 GenreWise_CF가 전통적인 협업 필터링을 적용하여 개발한 추천시스템인 Basic_CF보다 향상된 성능을 보였다.
Quantum technology is undergoing a revolution. Theoretically, strange phenomena of quantum mechanics, such as superposition and entanglement, can enable high-performance computing, unconditionally secure communication, and high-precision sensing. Such theoretical possibilities have been examined in the last few decades. The goal now is to apply these quantum advantages to daily life. Europe, where quantum mechanics was born a 100 years ago, is struggling to be placed at the front of this quantum revolution. Thus, the European Commission has decided to invest 1 billion EUR over 10 years and has initiated the ramp-up phase with 20 projects in the fields of communication, simulation, sensing and metrology, computing, and fundamental science. This program, approved by the European Commission, is called the "Quantum Technology Flagship" program. Its first objective is to consolidate and expand European scientific leadership and excellence in quantum research. Its second objective is to kick-start a competitive European industry in quantum technology and develop future global industrial leaders. Its final objective is to make Europe a dynamic and attractive region for innovative and collaborative research and business in quantum technology. This program also trains next-generation quantum engineers to achieve a world-leading position in quantum technology. However, the most important principle of this program is to realize quantum technology and introduce it to the market. To this end, the program emphasizes that academic institutes and industries in Europe have to collaborate to research and develop quantum technology. They believe that without commercialization, no technology can be developed to its full potential. In this study, we review the strategy of the Quantum Europe Flagship program and the 20 projects of the ramp-up phase.
Purpose Recently, social interest in the convergence research is at its peak. However, contrary to the keen interest in convergence research, an infrastructure that makes it easier to recruit researchers from other fields is not yet well established, which is why researchers are having considerable difficulty in carrying out real convergence research. In this study, we implemented a researcher recommendation system that helps researchers who want to collaborate easily recruit researchers from other fields, and we expect it to serve as a springboard for growth in the convergence research field. Design/methodology/approach In this study, we implemented a system that recommends proper researchers when users enter keyword in the field of research that they want to collaborate using word embedding techniques, word2vec. In addition, we also implemented function of keyword suggestions by using keywords drawn from LDA Topicmodeling Algorithm. Finally, the UI of the researcher recommendation system was completed by utilizing the collaborative messenger Slack to facilitate immediate exchange of information with the recommended researchers and to accommodate various applications for collaboration. Findings In this study, we validated the completed researcher recommendation system by ensuring that the list of researchers recommended by entering a specific keyword is accurate and that words learned as a similar word with a particular researcher match the researcher's field of research. The results showed 85.89% accuracy in the former, and in the latter case, mostly, the words drawn as similar words were found to match the researcher's field of research, leading to excellent performance of the researcher recommendation system.
빅데이터 기반의 추천시스템 모델링에서 바이어스, 분산, 오류 및 학습은 성능에 중요한 요소이다. 이러한 시스템에서는 추천 모델이 설명도를 유지하면서 복잡도를 줄여야 한다. 또한 데이터의 희소성과 시스템의 예측은 서로 반비례의 속성을 가지기 마련이다. 따라서 희소성의 데이터를 인수분해 방법을 활용하여 상품간의 유사성을 학습을 통한 상품추천모델이 제안되어 왔다. 본 논문에서는 이 모델의 손실함수에 대한 최적화 방안으로 max-norm 규제를 적용하여 모델의 일반화 능력을 향상시키고자 한다. 해결방안은 기울기를 투영하는 확률적 투영 기울기 강하법을 적용하는 것이다. 많은 실험을 통하여 데이터가 희박해질수록 기존의 방법에 비해 제안된 규제 방법이 상대적으로 효과가 있다는 것을 확인하였다.
디지털 기술이 산업 전반의 전자상거래 시장에 융합되면서 온라인 거래의 활성화와 이용률을 증가시켰으며, 이러한 시장의 흐름은 최근 코로나와 같은 감염병이 확산함에 따라 더욱 가속화되어 다양한 상품 정보를 온라인을 통해 고객들에게 제공할 수 있게 되었다. 다양한 정보의 제공은 고객들에게 다양한 선택의 기회를 제공하지만 의사결정에 어려움을 주기도 한다. 추천시스템은 고객의 의사결정에 도움을 줄 수 있으나 기존 추천시스템 연구는 정량적 데이터만에 국한되어 있으며, 상품 및 고객의 세부적인 요인을 반영하지 못하였다. 이에 본 연구에서는 온라인 리뷰를 기반으로 정성적 데이터를 텍스트 마이닝 기법을 적용하여 상품 및 고객의 속성을 정량화하고 기존의 객관적 지표인 총평점과 감성 및 감정을 통합한 지능형 추천시스템을 제안한다. 제안된 지능형 추천모형은 총평점 위주의 추천 모형보다 우수한 추천성과를 보여주었으며, 상품 및 고객의 세부적 요소를 반영한 추천결과를 통해 새로운 비즈니스 가치를 창출할 것으로 기대한다.
The fashion industry is creating innovative business models using artificial intelligence. To efficiently utilize artificial intelligence (AI), fashion data must be classified. Until now, such data have been classified focusing only on the objective properties of fashion products. Their subjective attributes, such as fashion brand sensibilities, are holistic and heuristic intuitions created by a combination of design elements. This study aims to improve the performance of collaborative filtering in the fashion industry by extracting fashion brand sensibility using computer vision technology. The image data set of fashion brand sensibility consists of high-end fashion brand photos that share sensibilities and communicate well in fashion. About 26,000 fashion photos of 11 high-end fashion brand sensibility labels have been collected from the 16FW to 21SS runway and 50 years of US Vogue magazines beginning from 1971. We use EfficientNet-B1 to establish the main architecture and fine-tune the network with ImageNet-ILSVRC. After training fashion brand sensibilities through deep learning, the proposed model achieved an F-1 score of 74% on accuracy tests. Furthermore, as a result of comparing AI machine and human experts, the proposed model is expected to be expanded to mass fashion brands.
Purpose: The purpose of this study is to examine the factors affecting the intention to use online collaboration tools for non-face-to-face educational environment in the perspective of the learners. Methods: For empirical analysis, the survey of this study was administered with data that were limited to experienced learners using online collaboration tools such as Google Docs, Allo, Padlet, and Slido in online education environments such as Zoom, Webex, MS Teams, etc. and valid 400 data were analyzed by SPSS(ver 22.0) and R(ver 4.1.0) program package. Results: The results of empirical analysis showed that performance expectancy were found to have an effect on reliability of system quality, empathy of service quality, playfulness and informativity of content quality among the characteristics of online collaboration tools. On the other hand, it was found that the security of system quality, responsiveness of service quality, and extroversion of user personality characteristics did not affect. It was analyzed that playfulness had the greatest positive effect, followed by informativity, empathy, and reliability. Among the characteristics of online collaboration tools, it was found that the reliability and security of system quality and informativity of content quality had an effect on the effort expectancy. It was analyzed that informativity has the greatest influence, followed by security and reliability. Conclusion: This study is meaningful in that it examines the perspectives of users and learners, who can be said to be the end customers of online collaboration tools. Based on the results of this study, it is expected that not only platform operators that provide online collaborative tools, but also providers that use online collaboration tools will have a significant impact on the development of edutech and infrastructure in the educational environment.
연구목적: 본 연구는 시대적 환경의 변화에 따른 경찰의 다양한 활동에 대한 성과를 효율적으로 증진시킬 수 있는 메타버스 기반 경찰교육훈련모델을 제안하고자 한다. 연구방법: HMD과 햅틱기술을 이용하여 표현되는 Avatar Controller를 생성하고, Network Interface에 접속하여 Cloud Education Server에서의 지휘통제모듈과 교육훈련콘텐츠모듈, 분석모듈 등을 통하여 개인 또는 팀 단위로 교육훈련 할 수 있다. 연구결과: 본 연구의 제안모델에서는 개인이나 팀 단위의 메타버스 기반 교육훈련 시 지휘통제모듈을 접목시킴으로써 테러나 범죄 상황 전반에 대하여 지휘감독요원들이 실시간으로 상황을 모니터링하여 지휘통제 하에 대응훈련을 하게 함으로써 팀원들 간의 유기적인 협업훈련도 가능하게 하였다. 결론: 메타버스를 기반으로 한 개인 또는 팀 단위의 경찰교육훈련은 몰입감, 상호작용 그리고 다양한 상황에서의 신속한 판단 등을 바탕으로 현실과 거의 흡사한 환경을 조성함으로써 보다 더 효율적이고 안전적인 교육훈련환경을 제공할 수 있기 때문에 향후 각국에서 메타버스를 기반으로 한 교육훈련 대응모델들은 지속적으로 성장하며 교육훈련에 있어서 새로운 대안으로 제시될 것으로 기대된다.
KSII Transactions on Internet and Information Systems (TIIS)
/
제16권11호
/
pp.3565-3583
/
2022
The task scheduling problem has received a lot of attention in recent years as a crucial area for research in the cloud environment. However, due to the difference in objectives considered by service providers and users, it has become a major challenge to resolve the conflicting interests of service providers and users while both can still take into account their respective objectives. Therefore, the task scheduling problem as a bi-objective game problem is formulated first, and then a task scheduling model based on the bi-objective game (TSBOG) is constructed. In this model, energy consumption and resource utilization, which are of concern to the service provider, and cost and task completion rate, which are of concern to the user, are calculated simultaneously. Furthermore, a many-objective evolutionary algorithm based on a partitioned collaborative selection strategy (MaOEA-PCS) has been developed to solve the TSBOG. The MaOEA-PCS can find a balance between population convergence and diversity by partitioning the objective space and selecting the best converging individuals from each region into the next generation. To balance the players' multiple objectives, a crossover and mutation operator based on dynamic games is proposed and applied to MaPEA-PCS as a player's strategy update mechanism. Finally, through a series of experiments, not only the effectiveness of the model compared to a normal many-objective model is demonstrated, but also the performance of MaOEA-PCS and the validity of DGame.
인공지능 기술은 스마트 시티, 자율 주행, 의료 분야 등 다양한 분야에서 활용 가능성을 높이 평가받고 있으나, 정보주체의 개인정보 및 민감정보의 노출 문제로 모델 활용이 제한되고 있다. 이에 따라 데이터를 중앙 서버에 모아서 학습하지 않고, 보유 데이터셋을 바탕으로 일차적으로 학습을 진행한 후 글로벌 모델을 최종적으로 학습하는 분산 기계 학습의 개념이 등장하였다. 그러나, 분산 기계 학습은 여전히 협력하여 학습을 진행하는 과정에서 데이터 프라이버시 위협이 발생한다. 본 연구는 분산 기계 학습 연구 분야에서 프라이버시를 보호하기 위한 연구를 서버의 존재 유무, 학습 데이터셋의 분포 환경, 참여자의 성능 차이 등 현재까지 제안된 분류 기준들을 바탕으로 유기적으로 분석하여 최신 연구 동향을 파악한다. 특히, 대표적인 분산 기계 학습 기법인 수평적 연합학습, 수직적 연합학습, 스웜 학습에 집중하여 활용된 프라이버시 보호 기법을 살펴본 후 향후 진행되어야 할 연구 방향을 모색한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.