• Title/Summary/Keyword: Collaborative IT

Search Result 1,449, Processing Time 0.026 seconds

Development and Application of Scientific Model Co-construction Program about Image Formation by Convex Lens (볼록렌즈가 상을 만드는 원리에 대한 과학적 모형의 사회적 구성 프로그램 개발 및 적용)

  • Park, Jeongwoo
    • Korean Journal of Optics and Photonics
    • /
    • v.28 no.5
    • /
    • pp.203-212
    • /
    • 2017
  • A scientific model refers to a conceptual system that can describe, explain, and predict a particular physical phenomenon. The co-construction of the scientific model is attracting attention as a new teaching and learning strategy in the field of science education and various studies. The evaluation and modification of models compared with the predicted models of data from the real world is the core of modeling strategy. However, there were only a limited data provided by the teacher in many studies of modeling comparing the students' predictions of their own models. Most of the students were not given the opportunity to evaluate the suitability of the model with the data in the real world. The purpose of this study was to develop a scientific model co-construction program that can evaluate the model by directly comparing the predicted models with the observed data from the real world. Through a collaborative discussion between teachers and researchers for 6 months, a 5-session scientific model co-construction program on the subject 'image formation by convex lenses' for second grade middle school students was developed. Eighty (80) students in 3 classes and a science teacher with 20 years of service from general public co-educational middle school in Gyeonggi-do participated in this 2-week program. After the class, students were asked about the helpfulness and difficulty of the class, and whether they would like to recommend this class to a friend. After the class, 95.8% of the students constructed the scientific model more than the model using the construction rule. Students had difficulties to identify principles or understand their friends, but the result showed that they could understand through model evaluation experiment. 92.5% of the students said that they would be more than willing to recommend this program to their friends. It is expected that the developed program will be applied to the school and contribute to the improvement of students' modeling ability and co-construction ability.

Exploring the Agency of a Student Leader in Collaborative Scientific Modeling Classes in an Elementary School (초등학교의 협력적 과학 모델링 수업에서 나타난 리더의 행위주체성 탐색)

  • Uhm, Janghee;Kim, Heui-Baik
    • Journal of The Korean Association For Science Education
    • /
    • v.41 no.4
    • /
    • pp.339-358
    • /
    • 2021
  • This study explores the agency of a student leader, expressed through efforts to distribute power and encourage participation in elementary scientific modeling classes. The study also analyzes the context in which the leader's agency was expressed and the context in which the development of a collective agency was constrained. The participants were 22 fifth-grade students. The leader's agency was analyzed by examining his words and actions. As a result, at the outset of the study, the leader had the most power, performing all the activities as the sole authority in a non-cooperative participation pattern. However, with reflection and help from the researcher, the leader recognized the problem and facilitated the participation of other students. He developed an identity as a teacher and demonstrated the agency. The leader's agentic behaviors can be categorized into three aspects. First, regarding the cognitive aspect, the leader helped other students participate in modeling by sharing his knowledge. Second, regarding the normative aspect, he made rules to give all students an equal voice. Third, regarding the emotional aspect, the leader acknowledged the contribution of the students, increasing their confidence. The leader's agency temporarily helped the group to overcome the student hierarchy, facilitating a cooperative participation pattern. However, the development of a collective agency was constrained. The power of the leader was partially redistributed, and the other students did not position themselves as equal to the leader. To support the leader's agency to develop into a collective agency, it is necessary to redistribute the power of the leader more equally and to change the recognition of students.

A Review on Monitoring Mt. Baekdu Volcano Using Space-based Remote Sensing Observations (인공위성 원격탐사를 이용한 백두산 화산 감시 연구 리뷰)

  • Hong, Sang-Hoon;Jang, Min-Jung;Jung, Seong-Woo;Park, Seo-Woo
    • Korean Journal of Remote Sensing
    • /
    • v.34 no.6_4
    • /
    • pp.1503-1517
    • /
    • 2018
  • Mt. Baekdu is a stratovolcano located at the border between China and North Korea and is known to have formed through its differentiation stage after the Oligocene epoch in the Cenozoic era. There has been a growing interest in the magma re-activity of Mt. Baekdu volcano since 2010. Several research projects have been conducted by government such as Korea Meteorological Administration and Korea Institute of Geoscience and Mineral Resources. Because, however, the Mt. Baekdu volcano is located far from South Korea, it is quite difficult to collect in-situ observations by terrestrial equipment. Remote sensing is a science to analyze and interpret information without direct physical contact with a target object. Various types of platform such as automobile, unmanned aerial vehicle, aircraft and satellite can be used for carrying a payload. In the past several decades, numerous volcanic studies have been conducted by remotely sensed observations using wide spectrum of wavelength channels in electromagnetic waves. In particular, radar remote sensing has been widely used for volcano monitoring in that microwave channel can gather surface's information without less limitation like day and night or weather condition. Radar interferometric technique which utilized phase information of radar signal enables to estimate surface displacement such as volcano, earthquake, ground subsidence or glacial movement, etc. In 2018, long-term research project for collaborative observation for Mt. Baekdu volcano between Korea and China were selected by Korea government. A volcanic specialized research center has been established by the selected project. The purpose of this paper is to introduce about remote sensing techniques for volcano monitoring and to review selected studies with remote sensing techniques to monitor Mt. Baekdu volcano. The acquisition status of the archived observations of six synthetic aperture radar satellites which are in orbit now was investigated for application of radar interferometry to monitor Mt. Baekdu volcano. We will conduct a time-series analysis using collected synthetic aperture radar images.

Application of diversity of recommender system accordingtouserpreferencechange (사용자 선호도 변화에 따른 추천시스템의 다양성 적용)

  • Na, Hyeyeon;Nam, Kihwan
    • Journal of Intelligence and Information Systems
    • /
    • v.26 no.4
    • /
    • pp.67-86
    • /
    • 2020
  • Recommender Systems have been huge influence users and business more and more. Recently the importance of E-commerce has been reached rapid growth greatly in world-wide COVID-19 pandemic. Recommender system is the center of E-commerce lively. Top ranked E-commerce managers mentioned that recommender systems have a major influence on customer's purchase such as about 50% of Netflix, Amazon sales from their recommender systems. Most algorithms have been focused on improving accuracy of recommender system regardless of novelty, diversity, serendipity etc. Recommender systems with only high accuracy cannot satisfy business long-term profit because of generating sales polarization. In addition, customers do not experience enjoyment of shopping from only focusing accuracy recommender system because customer's preference is changed constantly. Therefore, recommender systems with various values need to be developed for user's high satisfaction. Reranking is the most useful methodology to realize diversity of recommender system. In this paper, diversity of recommender system is represented through constructing high similarity with users who have different preference using each user's purchased item's category algorithm. It is distinguished from past research approach which is changing the algorithm of recommender system without user's diversity preference level. We tried to discover user's diversity preference level and observed the results how the effect was different according to user's diversity preference level. In addition, graph-based recommender system was used to show diversity through user's network, not collaborative filtering. In this paper, Amazon Grocery and Gourmet Food data was used because the low-involvement product, such as habitual product, foods, low-priced goods etc., had high probability to show customer's diversity. First, a bipartite graph with users and items simultaneously is constructed to make graph-based recommender system. However, each users and items unipartite graph also need to be established to show diversity of recommender system. The weight of each unipartite graph has played crucial role changing Jaccard Distance of item's category. We can observe two important results from the user's unipartite network. First, the user's diversity preference level is observed from the network and second, dissimilar users can be discovered in the user's network. Through the research process, diversity of recommender system is presented highly with small accuracy loss and optimalization for higher accuracy is possible controlling diversity ratio. This paper has three important theoretical points. First, this research expands recommender system research for user's satisfaction with various values. Second, the graph-based recommender system is developed newly. Third, the evaluation indicator of diversity is made for diversity. In addition, recommender systems are useful for corporate profit practically and this paper has contribution on business closely. Above all, business long-term profit can be improved using recommender system with diversity and the recommender system can provide right service according to user's diversity level. Lastly, the corporate selling low-involvement products have great effect based on the results.

Development and Application of the Teacher Education Model for Using Virtual and Augmented Reality Contents in Elementary Science Class (초등 과학 수업에서 가상현실과 증강현실 콘텐츠 활용을 위한 교사 교육 모델의 개발과 적용 사례)

  • Cha, Hyun-Jung;Ga, Seok-Hyun;Yoon, Hye-Gyoung
    • Journal of Korean Elementary Science Education
    • /
    • v.43 no.3
    • /
    • pp.415-432
    • /
    • 2024
  • This study developed and applied the teacher education model and its principles for science classes using Virtual and Augmented Reality (VR/AR) content and analyzed preservice elementary teachers' feedback on the teacher education model and the changes in their perceptions as to the use of VR/AR content. First, existing Technological Pedagogical Content Knowledge (TPACK) teacher education models and prior studies on the use of the VR/AR contents were reviewed to derive the teacher education model to cultivate the VR/AR-TPACK and set the key principles for each of its stages. The developed teacher education model has five stages: exploration, mapping, collaborative design, practice, and reflection. Second, to examine the appropriateness of the model's five stages and principles, we applied it within the regular course of instruction at the university of education, which was attended by 25 preservice elementary teachers. This study collected data from surveys on the perception of the usage of VR/AR contents before and after the course, as well as the group lesson plans prepared by the preservice teachers, and their feedback on the teacher education model. The feedback on the teacher education model and the survey conducted by the preservice teachers before and after the course were analyzed through open coding and categorization. As a result, most preservice teachers expressed positive opinions about the activities and experiences at each stage of the implementation of the teacher education model. Perceptions related to the usage of the VR/AR content changed in three aspects: first, the vague positive perception of the VR/AR content has changed to a positive perception based on specific educational affordance. Second, they recognized the need for preparedness by anticipating potential problems associated with the use of the VR/AR content. Third, they came to view the VR/AR contents as a useful instructional resource that the teachers could use. Based on these results, we discussed the implications for the VR/AR-TPACK teacher education model and assessed the limitations of the research.

Changes in National Health Insurance Medical Expenses and Long-Term Care Costs between the Long-Term Care Group and General Older Adults Group before and after Long-Term Care Use (노인장기요양급여 이용 전후 장기요양군과 일반노인군 간 국민건강보험 및 노인장기요양보험 비용 추이)

  • Seung-Jin Oh;Kang Ju Son
    • Health Policy and Management
    • /
    • v.34 no.3
    • /
    • pp.249-260
    • /
    • 2024
  • Background: The Republic of Korea's aging population escalates medical and long-term care costs. While prior research has suggested that long-term care might reduce these costs, these studies had limitations in their subjects and duration, making it difficult to generalize the results. This study aims to evaluate cost changes between the long-term care group and the general older adults group after addressing these limitations. Methods: A cohort was derived from the 2015 national population using stratified sampling. Subsequently, 15,114 individuals (7,557 in each group) were identified through 1:1 propensity score matching. The study employed a difference-in-differences analysis to explore variances in medical costs and long-term care benefits post-utilization of long-term care services. Results: Compared to the general older adults group, the long-term care group experienced a reduction in monthly per capita total medical costs by 56,459 Korean won (KRW). Although costs at tertiary and general hospitals increased, those related to long-term care hospitals decreased by 90,687 KRW. Including long-term care benefits, overall expenditures increased by 948,038 KRW. Conclusion: The analysis reveals that the long-term care group faces higher medical costs in acute care than the general older adults group, emphasizing a greater need for medical services within this group. To meet the increasing medical demands of the long-term care group, a collaborative strategy linking community resources, healthcare, and long-term care facilities is imperative. Additionally, developing and implementing preventive health habit management strategies for middle-aged and older adults is essential to diminish the future requirement for long-term care.

A Folksonomy Ranking Framework: A Semantic Graph-based Approach (폭소노미 사이트를 위한 랭킹 프레임워크 설계: 시맨틱 그래프기반 접근)

  • Park, Hyun-Jung;Rho, Sang-Kyu
    • Asia pacific journal of information systems
    • /
    • v.21 no.2
    • /
    • pp.89-116
    • /
    • 2011
  • In collaborative tagging systems such as Delicious.com and Flickr.com, users assign keywords or tags to their uploaded resources, such as bookmarks and pictures, for their future use or sharing purposes. The collection of resources and tags generated by a user is called a personomy, and the collection of all personomies constitutes the folksonomy. The most significant need of the folksonomy users Is to efficiently find useful resources or experts on specific topics. An excellent ranking algorithm would assign higher ranking to more useful resources or experts. What resources are considered useful In a folksonomic system? Does a standard superior to frequency or freshness exist? The resource recommended by more users with mere expertise should be worthy of attention. This ranking paradigm can be implemented through a graph-based ranking algorithm. Two well-known representatives of such a paradigm are Page Rank by Google and HITS(Hypertext Induced Topic Selection) by Kleinberg. Both Page Rank and HITS assign a higher evaluation score to pages linked to more higher-scored pages. HITS differs from PageRank in that it utilizes two kinds of scores: authority and hub scores. The ranking objects of these pages are limited to Web pages, whereas the ranking objects of a folksonomic system are somewhat heterogeneous(i.e., users, resources, and tags). Therefore, uniform application of the voting notion of PageRank and HITS based on the links to a folksonomy would be unreasonable, In a folksonomic system, each link corresponding to a property can have an opposite direction, depending on whether the property is an active or a passive voice. The current research stems from the Idea that a graph-based ranking algorithm could be applied to the folksonomic system using the concept of mutual Interactions between entitles, rather than the voting notion of PageRank or HITS. The concept of mutual interactions, proposed for ranking the Semantic Web resources, enables the calculation of importance scores of various resources unaffected by link directions. The weights of a property representing the mutual interaction between classes are assigned depending on the relative significance of the property to the resource importance of each class. This class-oriented approach is based on the fact that, in the Semantic Web, there are many heterogeneous classes; thus, applying a different appraisal standard for each class is more reasonable. This is similar to the evaluation method of humans, where different items are assigned specific weights, which are then summed up to determine the weighted average. We can check for missing properties more easily with this approach than with other predicate-oriented approaches. A user of a tagging system usually assigns more than one tags to the same resource, and there can be more than one tags with the same subjectivity and objectivity. In the case that many users assign similar tags to the same resource, grading the users differently depending on the assignment order becomes necessary. This idea comes from the studies in psychology wherein expertise involves the ability to select the most relevant information for achieving a goal. An expert should be someone who not only has a large collection of documents annotated with a particular tag, but also tends to add documents of high quality to his/her collections. Such documents are identified by the number, as well as the expertise, of users who have the same documents in their collections. In other words, there is a relationship of mutual reinforcement between the expertise of a user and the quality of a document. In addition, there is a need to rank entities related more closely to a certain entity. Considering the property of social media that ensures the popularity of a topic is temporary, recent data should have more weight than old data. We propose a comprehensive folksonomy ranking framework in which all these considerations are dealt with and that can be easily customized to each folksonomy site for ranking purposes. To examine the validity of our ranking algorithm and show the mechanism of adjusting property, time, and expertise weights, we first use a dataset designed for analyzing the effect of each ranking factor independently. We then show the ranking results of a real folksonomy site, with the ranking factors combined. Because the ground truth of a given dataset is not known when it comes to ranking, we inject simulated data whose ranking results can be predicted into the real dataset and compare the ranking results of our algorithm with that of a previous HITS-based algorithm. Our semantic ranking algorithm based on the concept of mutual interaction seems to be preferable to the HITS-based algorithm as a flexible folksonomy ranking framework. Some concrete points of difference are as follows. First, with the time concept applied to the property weights, our algorithm shows superior performance in lowering the scores of older data and raising the scores of newer data. Second, applying the time concept to the expertise weights, as well as to the property weights, our algorithm controls the conflicting influence of expertise weights and enhances overall consistency of time-valued ranking. The expertise weights of the previous study can act as an obstacle to the time-valued ranking because the number of followers increases as time goes on. Third, many new properties and classes can be included in our framework. The previous HITS-based algorithm, based on the voting notion, loses ground in the situation where the domain consists of more than two classes, or where other important properties, such as "sent through twitter" or "registered as a friend," are added to the domain. Forth, there is a big difference in the calculation time and memory use between the two kinds of algorithms. While the matrix multiplication of two matrices, has to be executed twice for the previous HITS-based algorithm, this is unnecessary with our algorithm. In our ranking framework, various folksonomy ranking policies can be expressed with the ranking factors combined and our approach can work, even if the folksonomy site is not implemented with Semantic Web languages. Above all, the time weight proposed in this paper will be applicable to various domains, including social media, where time value is considered important.

Content-based Recommendation Based on Social Network for Personalized News Services (개인화된 뉴스 서비스를 위한 소셜 네트워크 기반의 콘텐츠 추천기법)

  • Hong, Myung-Duk;Oh, Kyeong-Jin;Ga, Myung-Hyun;Jo, Geun-Sik
    • Journal of Intelligence and Information Systems
    • /
    • v.19 no.3
    • /
    • pp.57-71
    • /
    • 2013
  • Over a billion people in the world generate new news minute by minute. People forecasts some news but most news are from unexpected events such as natural disasters, accidents, crimes. People spend much time to watch a huge amount of news delivered from many media because they want to understand what is happening now, to predict what might happen in the near future, and to share and discuss on the news. People make better daily decisions through watching and obtaining useful information from news they saw. However, it is difficult that people choose news suitable to them and obtain useful information from the news because there are so many news media such as portal sites, broadcasters, and most news articles consist of gossipy news and breaking news. User interest changes over time and many people have no interest in outdated news. From this fact, applying users' recent interest to personalized news service is also required in news service. It means that personalized news service should dynamically manage user profiles. In this paper, a content-based news recommendation system is proposed to provide the personalized news service. For a personalized service, user's personal information is requisitely required. Social network service is used to extract user information for personalization service. The proposed system constructs dynamic user profile based on recent user information of Facebook, which is one of social network services. User information contains personal information, recent articles, and Facebook Page information. Facebook Pages are used for businesses, organizations and brands to share their contents and connect with people. Facebook users can add Facebook Page to specify their interest in the Page. The proposed system uses this Page information to create user profile, and to match user preferences to news topics. However, some Pages are not directly matched to news topic because Page deals with individual objects and do not provide topic information suitable to news. Freebase, which is a large collaborative database of well-known people, places, things, is used to match Page to news topic by using hierarchy information of its objects. By using recent Page information and articles of Facebook users, the proposed systems can own dynamic user profile. The generated user profile is used to measure user preferences on news. To generate news profile, news category predefined by news media is used and keywords of news articles are extracted after analysis of news contents including title, category, and scripts. TF-IDF technique, which reflects how important a word is to a document in a corpus, is used to identify keywords of each news article. For user profile and news profile, same format is used to efficiently measure similarity between user preferences and news. The proposed system calculates all similarity values between user profiles and news profiles. Existing methods of similarity calculation in vector space model do not cover synonym, hypernym and hyponym because they only handle given words in vector space model. The proposed system applies WordNet to similarity calculation to overcome the limitation. Top-N news articles, which have high similarity value for a target user, are recommended to the user. To evaluate the proposed news recommendation system, user profiles are generated using Facebook account with participants consent, and we implement a Web crawler to extract news information from PBS, which is non-profit public broadcasting television network in the United States, and construct news profiles. We compare the performance of the proposed method with that of benchmark algorithms. One is a traditional method based on TF-IDF. Another is 6Sub-Vectors method that divides the points to get keywords into six parts. Experimental results demonstrate that the proposed system provide useful news to users by applying user's social network information and WordNet functions, in terms of prediction error of recommended news.

Clustering Method based on Genre Interest for Cold-Start Problem in Movie Recommendation (영화 추천 시스템의 초기 사용자 문제를 위한 장르 선호 기반의 클러스터링 기법)

  • You, Tithrottanak;Rosli, Ahmad Nurzid;Ha, Inay;Jo, Geun-Sik
    • Journal of Intelligence and Information Systems
    • /
    • v.19 no.1
    • /
    • pp.57-77
    • /
    • 2013
  • Social media has become one of the most popular media in web and mobile application. In 2011, social networks and blogs are still the top destination of online users, according to a study from Nielsen Company. In their studies, nearly 4 in 5active users visit social network and blog. Social Networks and Blogs sites rule Americans' Internet time, accounting to 23 percent of time spent online. Facebook is the main social network that the U.S internet users spend time more than the other social network services such as Yahoo, Google, AOL Media Network, Twitter, Linked In and so on. In recent trend, most of the companies promote their products in the Facebook by creating the "Facebook Page" that refers to specific product. The "Like" option allows user to subscribed and received updates their interested on from the page. The film makers which produce a lot of films around the world also take part to market and promote their films by exploiting the advantages of using the "Facebook Page". In addition, a great number of streaming service providers allows users to subscribe their service to watch and enjoy movies and TV program. They can instantly watch movies and TV program over the internet to PCs, Macs and TVs. Netflix alone as the world's leading subscription service have more than 30 million streaming members in the United States, Latin America, the United Kingdom and the Nordics. As the matter of facts, a million of movies and TV program with different of genres are offered to the subscriber. In contrast, users need spend a lot time to find the right movies which are related to their interest genre. Recent years there are many researchers who have been propose a method to improve prediction the rating or preference that would give the most related items such as books, music or movies to the garget user or the group of users that have the same interest in the particular items. One of the most popular methods to build recommendation system is traditional Collaborative Filtering (CF). The method compute the similarity of the target user and other users, which then are cluster in the same interest on items according which items that users have been rated. The method then predicts other items from the same group of users to recommend to a group of users. Moreover, There are many items that need to study for suggesting to users such as books, music, movies, news, videos and so on. However, in this paper we only focus on movie as item to recommend to users. In addition, there are many challenges for CF task. Firstly, the "sparsity problem"; it occurs when user information preference is not enough. The recommendation accuracies result is lower compared to the neighbor who composed with a large amount of ratings. The second problem is "cold-start problem"; it occurs whenever new users or items are added into the system, which each has norating or a few rating. For instance, no personalized predictions can be made for a new user without any ratings on the record. In this research we propose a clustering method according to the users' genre interest extracted from social network service (SNS) and user's movies rating information system to solve the "cold-start problem." Our proposed method will clusters the target user together with the other users by combining the user genre interest and the rating information. It is important to realize a huge amount of interesting and useful user's information from Facebook Graph, we can extract information from the "Facebook Page" which "Like" by them. Moreover, we use the Internet Movie Database(IMDb) as the main dataset. The IMDbis online databases that consist of a large amount of information related to movies, TV programs and including actors. This dataset not only used to provide movie information in our Movie Rating Systems, but also as resources to provide movie genre information which extracted from the "Facebook Page". Formerly, the user must login with their Facebook account to login to the Movie Rating System, at the same time our system will collect the genre interest from the "Facebook Page". We conduct many experiments with other methods to see how our method performs and we also compare to the other methods. First, we compared our proposed method in the case of the normal recommendation to see how our system improves the recommendation result. Then we experiment method in case of cold-start problem. Our experiment show that our method is outperform than the other methods. In these two cases of our experimentation, we see that our proposed method produces better result in case both cases.