Browse > Article
http://dx.doi.org/10.7780/kjrs.2018.34.6.4.4

A Review on Monitoring Mt. Baekdu Volcano Using Space-based Remote Sensing Observations  

Hong, Sang-Hoon (Department of Geological Sciences, Pusan National University)
Jang, Min-Jung (Department of Geological Sciences, Pusan National University)
Jung, Seong-Woo (Department of Geological Sciences, Pusan National University)
Park, Seo-Woo (Department of Geological Sciences, Pusan National University)
Publication Information
Korean Journal of Remote Sensing / v.34, no.6_4, 2018 , pp. 1503-1517 More about this Journal
Abstract
Mt. Baekdu is a stratovolcano located at the border between China and North Korea and is known to have formed through its differentiation stage after the Oligocene epoch in the Cenozoic era. There has been a growing interest in the magma re-activity of Mt. Baekdu volcano since 2010. Several research projects have been conducted by government such as Korea Meteorological Administration and Korea Institute of Geoscience and Mineral Resources. Because, however, the Mt. Baekdu volcano is located far from South Korea, it is quite difficult to collect in-situ observations by terrestrial equipment. Remote sensing is a science to analyze and interpret information without direct physical contact with a target object. Various types of platform such as automobile, unmanned aerial vehicle, aircraft and satellite can be used for carrying a payload. In the past several decades, numerous volcanic studies have been conducted by remotely sensed observations using wide spectrum of wavelength channels in electromagnetic waves. In particular, radar remote sensing has been widely used for volcano monitoring in that microwave channel can gather surface's information without less limitation like day and night or weather condition. Radar interferometric technique which utilized phase information of radar signal enables to estimate surface displacement such as volcano, earthquake, ground subsidence or glacial movement, etc. In 2018, long-term research project for collaborative observation for Mt. Baekdu volcano between Korea and China were selected by Korea government. A volcanic specialized research center has been established by the selected project. The purpose of this paper is to introduce about remote sensing techniques for volcano monitoring and to review selected studies with remote sensing techniques to monitor Mt. Baekdu volcano. The acquisition status of the archived observations of six synthetic aperture radar satellites which are in orbit now was investigated for application of radar interferometry to monitor Mt. Baekdu volcano. We will conduct a time-series analysis using collected synthetic aperture radar images.
Keywords
Mt. Baekdu volcano; remote sensing; synthetic aperture radar; radar interferometry; ground surface displacement;
Citations & Related Records
Times Cited By KSCI : 5  (Citation Analysis)
연도 인용수 순위
1 Hong, S.-H., S. Wdowinski, S.-W. Kim, and J.-S. Won, 2010b. Multi-temporal monitoring of wetland water levels in the florida everglades using interferometric synthetic aperture radar (insar), Remote Sensing of Environment, 114(11): 2436-2447.   DOI
2 Huang, F. and Y. Qi, 2010. Object-oriented land cover extraction in changbai natural reserve from ikonos image, Proc. of 2010 18th International Conference on Geoinformatics, Beijing, Jun. 18-20, pp. 1-4.
3 Jensen, J. R. and K. Lulla, 1987. Introductory digital image processing: A remote sensing perspective, Pearson, New York City, NY, USA.
4 Ji, L., J. Xu, Q. Wang, and Y. Wan, 2013. Episodic deformation at changbaishan tianchi volcano, northeast china during 2004 to 2010, observed by persistent scatterer interferometric synthetic aperture radar, Journal of Applied Remote Sensing, 7(1): 073499.   DOI
5 Kieber, D. J., 2000. Causes and environmental implications of increased uv-b radiation, Royal Society of Chemistry, London, UK.
6 Kim, J. H., 1992. A study on geology and geomorphology of the mt . Paekdu, Journal of Korean Association of Professional Geographers, 19: 1-28.
7 Kim, J.-R., S.-Y. Lin, S. Hong, Y.-S. Choi, and H.-W. Yun, 2014. Ground deformation tracking over mt. Baekdu: A pre-evaluation of possible magma recharge by d-insar analysis, KSCE Journal of Civil Engineering, 18(5): 1505-1510.   DOI
8 Kim, J.-R., S.-Y. Lin, H.-W. Yun, Y.-L. Tsai, H.-J. Seo, S. Hong, and Y. Choi, 2017. Investigation of potential volcanic risk from mt. Baekdu by dinsar time series analysis and atmospheric correction, Remote Sensing, 9(2): 138.   DOI
9 Kim, S.-W., 2004. Measurement of surface displacement of mt. Baekdu and busan area using l-band sar interferometry, Ph. D. Thesis of Yonsei University, Seoul, Korea, p.157.
10 Kim, J. W., J.-S. Jeon, and Y. S. Lee, 2005. Geohazard monitoring with space and geophysical technologyan introduction to the kjrs 21 (1) special issue, Korean Journal of Remote Sensing, 21(1): 3-13.   DOI
11 Kim, S.-W., S. Wdowinski, F. Amelung, T. H. Dixon, and J.-S. Won, 2013. Interferometric coherence analysis of the everglades wetlands, south florida, IEEE Transactions on Geoscience and Remote Sensing, 51(12): 5210-5224.   DOI
12 Kim, S.-W., J.-S. Won, J.-W. Kim, W. Moon, and K.-D. Min, 2001a. Swelling of the Baegdu stratovolcanic mountain observed by dinsar, Proc. of Conference of the Korea Soceity of Remote Sensing, Seoul, Mar. 30, pp. 128-132.
13 Kim, S.-W., J.-S. Won, J. W. Kim, and W. M. Moon, 2001b. Application of differential sar interferometry over the baegdu stratovolcanic mountain, Proc. of International Geoscience and Remote Sensing Symposium, Sydney, Jul. 9-13.
14 Kim, S.-W., J.-S. Won, H. J. Lee, and W. M. Moon, 2000. Sar investigation over the baegdu stratovolcanic mountain: Preliminary results, Proc. of International Geoscience and Remote Sensing Symposium, Hawaii, Jul. 24-28, pp. 3231-3233.
15 Kim, S. W. and J. S. Won, 2005. Radar measurement of slow deformation in the baekdusan stratovolcano, Korean Journal of Remote Sensing, 21(3): 221-228.   DOI
16 Krueger, A., N. Krotkov, and S. Carn, 2008. El chichon: The genesis of volcanic sulfur dioxide monitoring from space, Journal of Volcanology and Geothermal Research, 175(4): 408-414.   DOI
17 Lee, C.-W. and M. Lee, 2017. Volcanic activity monitoring in mt. Baekdu using sar and laharz model, Proc. of EGU General Assembly Conference Abstracts, Vienna, Apr. 8-13, vol. 19, pp. 11567.
18 Krueger, A. J., 1983. Sighting of el chichon sulfur dioxide clouds with the nimbus 7 total ozone mapping spectrometer, Science, 220(4604): 1377-1379.   DOI
19 Lanari, R., O. Mora Sacristan, M. Manunta, J. J. Mallorqui Franquet, P. Berardino, and E. Sansoti, 2004. A small-baseline approach for investigating deformations on full-resolution differential SAR interferograms, IEEE Transactions on Geoscience and Remote Sensing, 42(7): 1377-1386.   DOI
20 Lee, C.-W., 2014. Baekdusan volcano time-series analysis from 1992 to 1998 using multi-interferogram insar processing, Terrestrial, Atmospheric & Oceanic Sciences, 25(6).
21 Lee, D.-S., S.-C. Choi, C.-W. Oh, M.-H. Seo, and I.-C. Ryu, 2013. The study on the possibility of using satellite in monitoring precursor of magma activity in the baegdusan volcano, The Journal of the Petrological Society of Korea, 22(1): 35-47.   DOI
22 Lee, D.-S., C. W. Oh, S. C. Choi, and M. H. Seo, 2014. The necessity of constructing satellite monitoring system for activities of baegdu volcano and active volcanos around the korean peninsula, Journal of International Area Studies, 18(3): 189-209.   DOI
23 Lee, H., K. Ahn, B. Park, O. Jaehong, and D. Han, 2010. Correction of mt. Baekdu dem generated from spot-5 stereo images, Journal of the Korean Society of Survey, Geodesy, Photogrammetry, and Cartography, 28(5): 555-560.
24 Lee, J. S., S. H. Baek, C. W. Seo, and H. C. Yun, 2016a. Temperature change detection of mt. Baekdu cheonji using landsat satellite images, Proc. of Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography, Suwon, Apr. 29-29, pp. 182-183.
25 Moreira, A., P. Prats-Iraola, M. Younis, G. Krieger, I. Hajnsek, and K. P. Papathanassiou, 2013. A tutorial on synthetic aperture radar, IEEE Geoscience and Remote Sensing Magazine, 1(1): 6-43.   DOI
26 Lee, W.-J., H.-S. Jung, S.-C. Park, and D. K. Lee, 2016b. Precisely determined the surface displacement by the ionospheric mitigation using the l-band sar interferometry over mt. Baekdu, Proc. of EGU General Assembly Conference Abstracts, Vienna, Apr. 17-22, vol. 18, pp. 5236.
27 Lee, W. K., J. Y. Lee, H. B. Kwak, S. H. Choi, D. A. Kwak, and T. J. Park, 2012. Vegetation classification and biomass estimation using ikonos imagery in mt. Changbai mountain area, Journal of Korean Society of Forest Science, 101(3): 356-364.
28 Lu, Z., D. Dzurisin, J. Biggs, C. Wicks Jr., and S. McNutt, 2010. Ground surface deformation patterns, magma supply, and magma storage at okmok volcano, alaska, from insar analysis: 1. Intereruption deformation, 1997-2008, Journal of Geophysical Research: Solid Earth, 115(B5).
29 Massonnet, D., P. Briole, and A. Arnaud, 1995. Deflation of mount etna monitored by spaceborne radar interferometry, Nature, 375(6532): 567.   DOI
30 Massonnet, D., M. Rossi, C. Carmona, F. Adragna, G. Peltzer, K. Feigl, and T. Rabaute, 1993. The displacement field of the landers earthquake mapped by radar interferometry, Nature, 364 (6433): 138.   DOI
31 Mouginis-Mark, P., S. Rowland, P. Francis, T. Friedman, H. Garbeil, J. Gradie, S. Self, L. Wilson, J. Crisp, and L. Glaze, 1991. Analysis of active volcanoes from the earth observing system, Remote Sensing of Environment, 36(1): 1-12.   DOI
32 Mouginis-Mark, P. J., J. A. Crisp, and J. H. Fink, 2000. Remote sensing of active volcanism, Washington DC American Geophysical Union Geophysical Monograph Series, 116.
33 Pepe, A. and F. Calo, 2017. A review of interferometric synthetic aperture radar (insar) multi-track approaches for the retrieval of earth's surface displacements, Applied Sciences, 7(12): 1264.   DOI
34 Oh, C. W., S. C. Choi, D. S. Lee, J. H. Park, and M. D. Kim, 2014. Necessity and possibility of the research for the study of magma activity under the baegdu volcano using satellite, Journal of International Area Studies, 18(3): 169-188.   DOI
35 Park, S.-H., H.-S. Jung, and H.-S. Shin, 2013. An efficient method to estimate land surface temperature difference (lstd) using landsat satellite images, Korean Journal of Remote Sensing, 29(2): 197-207 (in Korean with English abstract).   DOI
36 Park, S.-H., H.-S. Jung, and H.-S. Shin, 2014. Time-series monitoring result of land surface temperature variation at mt. Baekdu using landsat images, Proc. of Land Surface Remote Sensing II, vol. 9260, pp. 92600Z.   DOI
37 Pritchard, M. E. and M. Simons, 2004. An insar-based survey of volcanic deformation in the southern andes, Geophysical Research Letters, 31(15).
38 Pyle, D. M., T. A. Mather, and J. Biggs, 2013. SP380: Remote sensing of volcanoes and volcanic processes: Integrating observation and modellingintroduction, Geological Society of London, London, UK.
39 Stone, R., 2010. Is china's riskiest volcano stirring or merely biding its time?, Science, 329(5991): 498-499.   DOI
40 Spampinato, L., S. Calvari, C. Oppenheimer, and E. Boschi, 2011. Volcano surveillance using infrared cameras, Earth-Science Reviews, 106(1-2): 63-91.   DOI
41 Stone, R., 2011. Vigil at north korea's mount doom, Science, 334(6056): 584-588.   DOI
42 Wdowinski, S. and S. Eriksson, 2009. Geodesy in the 21st century, Eos, Transactions American Geophysical Union, 90(18): 153-155.   DOI
43 Yun, S.-H. and J. H. Lee, 2012. Analysis of unrest signs of activity at the baegdusan volcano, Journal of the Petrological Society of Korea, 21(1): 1-12.   DOI
44 Wright, R., L. Flynn, H. Garbeil, A. Harris, and E. Pilger, 2002. Automated volcanic eruption detection using modis, Remote Sensing of Environment, 82(1): 135-155.   DOI
45 Wright, R., L. P. Flynn, and A. J. Harris, 2001. Evolution of lava flow-fields at mount etna, 27-28 october 1999, observed by landsat 7 etm+, Bulletin of Volcanology, 63(1): 1-7.   DOI
46 Yu, S. Y., Y.-J. Lee, S.-M. Yoon, and K.-H. Choi, 2014. Economic loss estimation of mt. Baekdu eruption scenarios, Economic and Environmental Geology, 47(3): 1-13.   DOI
47 Yun, S.-H., C. K. Won, and M. W. Lee, 1993. Cenozoic volcanic activity and petrochemistry of volcanic rocks in the mt. Paektu area, Journal of the Geological Society of Korea, 29(3): 291-307.
48 Gonzalez, C., P. Rizzoli, M. Martone, C. Wecklich, D. Borla Tridon, M. Bachmann, T. Fritz, B. Wessel, G. Krieger, and M. Zink, 2017. The new global digital elevation model: Tandem-x dem and its final performance, Proc. of EGU General Assembly Conference Abstracts, Vienna, Apr. 8-13, vol. 19, pp. 8978.
49 Zaksek, K., M. Hort, J. Zaletelj, and B. Langmann, 2013. Monitoring volcanic ash cloud top height through simultaneous retrieval of optical data from polar orbiting and geostationary satellites, Atmospheric Chemistry and Physics, 13(5): 2589-2606.   DOI
50 Zebker, H. A., P. A. Rosen, R. M. Goldstein, A. Gabriel, and C. L. Werner, 1994. On the derivation of coseismic displacement fields using differential radar interferometry: The landers earthquake, Journal of Geophysical Research: Solid Earth, 99(B10): 19617-19634.   DOI
51 Hanssen, R. F., 2001. Radar interferometry: Data interpretation and error analysis, Kluwer Academic Publishers, New York City, NY. USA.
52 Harris, A., E. Pilger, L. Flynn, H. Garbeil, P. Mouginis-Mark, J. Kauahikaua, and C. Thornber, 2001. Automated, high temporal resolution, thermal analysis of kilauea volcano, hawai'i, using goes satellite data, International Journal of Remote Sensing, 22(6): 945-967.   DOI
53 Francis, P. and D. Rothery, 2000. Remote sensing of active volcanoes, Annual Review of Earth and Planetary Sciences, 28(1): 81-106.   DOI
54 Henderson, F. M. and A. J. Lewis, 1998. Principles and applications of imaging radar, Manual of remote sensing: Volume 2, Wiley, New York City, NY, USA.
55 Hong, S.-H. and S. Wdowinski, 2014. Multitemporal multitrack monitoring of wetland water levels in the florida everglades using alos palsar data with interferometric processing, IEEE Geoscience and Remote Sensing Letters, 11(8): 1355-1359.   DOI
56 Hong, S.-H. and S. Wdowinski, 2017. A review on monitoring the everglades wetlands in the southern florida using space-based synthetic aperture radar (sar) observations, Korean Journal of Remote Sensing, 33(4): 377-390.   DOI
57 Gabriel, A. K., R. M. Goldstein, and H. A. Zebker, 1989. Mapping small elevation changes over large areas: Differential radar interferometry, Journal of Geophysical Research: Solid Earth, 94(B7): 9183-9191.   DOI
58 Amelung, F., S. Jonsson, H. Zebker, and P. Segall, 2000. Widespread uplift and 'trapdoor' faulting on galapagos volcanoes observed with radar interferometry, Nature, 407(6807): 993.   DOI
59 Blackett, M., 2014. Early analysis of landsat-8 thermal infrared sensor imagery of volcanic activity, Remote sensing, 6(3): 2282-2295.   DOI
60 Baatz, M., U. Benz, S. Dehghani, M. Heynen, A. Holtje, P. Hofmann, I. Lingenfelder, M. Mimler, M. Sohlbach, and M. Weber, 2004. Ecognition user guide, Definiens Imaging GmbH, Munich, Germany.
61 Chen, G. H., X. J. Shan, W. M. Moon, and K. R. Kim, 2008. A modeling of the magma chamber beneath the changbai mountains volcanic area constrained by insar and gps derived deformation, Chinese Journal of Geophysics, 51(4): 765-773.   DOI
62 Ferretti, A., A. Fumagalli, F. Novali, C. Prati, F. Rocca, and A. Rucci, 2011. A new algorithm for processing interferometric data-stacks: Squeesar, IEEE Transactions on Geoscience and Remote Sensing, 49(9): 3460-3470.   DOI
63 Chi, H., G. Sun, J. Huang, R. Li, X. Ren, W. Ni, and A. Fu, 2017. Estimation of forest aboveground biomass in changbai mountain region using icesat/glas and landsat/tm data, Remote Sensing, 9(7): 707.   DOI
64 Cho, J.-D., 2015. The case of remote sensing for the earthquake, Proc. of Conference of the Geological Science in Korea, Jeju, Oct. 28-31, pp. 395-395.
65 Feng, L., W. M. Moon, D.-J. Kim, K. Choi, and Y. Yamaguchi, 1999. Investigation of baiktu-san (volcano) using space-borne sar system, Proc. of International Geoscience and Remote Sensing Symposium, Hamburg, Jun. 28-Jul. 29, pp. 270-272.
66 Ferretti, A., C. Prati, and F. Rocca, 2001. Permanent scatterers in sar interferometry, IEEE Transactions on Geoscience and Remote Sensing, 39(1): 8-20.   DOI
67 Flynn, L. P., A. J. Harris, D. A. Rothery, and C. Oppenheimer, 2000. High-spatial-resolution thermal remote sensing of active volcanic features using landsat and hyperspectral data, Geophysical Monograph-American Geophysical Union, 116: 161-178.
68 Hong, S.-H., S. Wdowinski, and S.-W. Kim, 2010a. Evaluation of terrasar-x observations for wetland insar application, IEEE Transactions on Geoscience and Remote Sensing, 48(2): 864-873.   DOI
69 Fournier, T., M. Pritchard, and S. Riddick, 2010. Duration, magnitude, and frequency of subaerial volcano deformation events: New results from latin america using insar and a global synthesis, Geochemistry, Geophysics, Geosystems, 11(1).