• 제목/요약/키워드: Cold-air Flow Simulation

검색결과 65건 처리시간 0.029초

공동주택용 하이브리드 환기설비에 관한 연구 (A Study of Hybrid Ventilation System applying to an Apartment House)

  • 이성환
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2006년도 하계학술발표대회 논문집
    • /
    • pp.1137-1143
    • /
    • 2006
  • The purpose of this research lays on examining the adequacy of the hybrid ventilation system. The hybrid ventilation system must satisfy the next to be used. Firstly, the cold-draft phenomenon must not exist in the occupied zone. Secondly, the condensation must not happen on the surfaces of vents. Thirdly, the flow of make-up air must be happened in an each space by exhausted air of a rest room and living room. We used an examination and CFD method to verify these. Trough the examination of air-vents, We confirmed that the cold-draft to be induced by make-up air does not happen and could not find the condensation in the limits of outdoor temperature higher than 265K. Through CFD simulation, We confirmed that the rapid temperature change existed only within 0.5m the occupied zone and the flow of air was happened in an each space by only exhausted air in the rest room and living room. Consequently, the hybrid system is possible method to an apartment house.

  • PDF

북동 기류와 관련된 영동해안 지역의 대설 사례에 대한 WRF수치모의 연구 (A Numerical Simulation Study Using WRF of a Heavy Snowfall Event in the Yeongdong Coastal Area in Relation to the Northeasterly)

  • 이재규;김유진
    • 대기
    • /
    • 제18권4호
    • /
    • pp.339-354
    • /
    • 2008
  • A numerical simulation of a heavy snowfall event that occurred 13 January 2008 along the Yeongdong coastal area, was performed using WRF (Weather Research and Forecasting) in order to reveal mesoscale structures and to construct a conceptual model showing the meteorological background that caused the large difference in snowfall amounts between the Yeongdong mountain area and the Yeongdong coastal area. The simulation results matched well with various observations such as corresponding 12h-accumulated observed precipitation, surface wind obscrvation, radar echoes, and satellite infrared images. The simulation and the observations showed that the scale of the event was of meso - $\beta$ and meso - $\gamma$ scale. The simulation represented well the mesoscale process causing the large difference in snowfall amounts in the two areas. First, wind flow was kept, to a certain extent, from crossing the mountains due to the blocking effect of the low Froude number (~1). The northeast flow over the adjaccnt sea tumcd northwest as it approachcd the mountains, where it was trapped, allowing so-called cold air damming. Second, a strong convergence area formed where the cold northwest flow along the Yeongdong coastal area and the relatively warm and moist northeast flow advecting toward the coast met, supporting the fonllation of a coastal front. Thus, the vertical motion was strongest over the front located near the coast, leading to the heavy snowfall there rather than in the remote mountain area.

CFD 시뮬레이션을 이용한 냉장컨테이너의 열유동 설계 (Design of Heat and Fluid Flow in Cold Container Using CFD Simulation)

  • 윤홍선;권진경;정훈;이현동;김영근
    • Journal of Biosystems Engineering
    • /
    • 제33권6호
    • /
    • pp.396-403
    • /
    • 2008
  • Because thermal non-uniformity of transported agricultural products is mainly affected by cooling air flow pattern in the cold transport equipment, the analysis and control of flowfield is key to optimization of cold transport equipment. The objectives of this study were to estimate the effects of geometric and operating parameters of cold container on the air flow and heat transfer, and find the optimum design parameters for the low temperature level and its uniformity in given cold container with CFD simulations. Existences of ducts, gaps between pallets and geometries of exit as geometric parameters and fan blowing velocity as operating parameter were investigated. CFD simulations were carried out with the FLUENT 6.2 code. The result showed that optimum design condition was bulk loading with no duct, wall exit and 8.0 m/s of fan blowing velocity.

2차 공기 공급 시스템을 채택한 촉매 변환기 내 냉 시동 구간 배기가스 해석 (Emission Analysis in Catalytic Converter Adopted Secondary Air Injection System for Cold Start Period)

  • 윤정의
    • 한국자동차공학회논문집
    • /
    • 제18권6호
    • /
    • pp.46-52
    • /
    • 2010
  • In this paper, emission analysis during cold start period of CVS-75 mode in LPG vehicle was performed to find out proper operating conditions of SAI(Secondary Air Injection) system. In order to meet SULEV target, the simulated emission system had a SAI system as well as a MCC(Manifold Catalytic Converter) and a UCC(Under body Catalytic Converter). Using commercial 1-D code AMESIM, in which 7 step global surface chemical reactions of Langmuir-Hinshelwood type were adopted, transient emission analysis in the exhaust system during cold start period of CVS-75 mode were carried out to figure out the effects of flow rate, duration of supply air on HC, CO, NO emission.

와류 저감을 통한 냉장고 냉기순환용 고성능/저소음 원심홴의 개발 (Development of High-performance/low-noise Centrifugal Fan Circulating Cold Air Inside a Household Refrigerator by Reduction of Vortex Flow)

  • 신동휘;유서윤;정철웅;김태훈;정지원
    • 한국소음진동공학회논문집
    • /
    • 제26권4호
    • /
    • pp.428-435
    • /
    • 2016
  • In this paper, high-performance and low-noise centrifugal fan used to circulate cold air inside a household refrigerator is developed by reducing the vortex flow observed near the tip of fan hub. First, the performance of the existing centrifugal fan is investigated through the experiment using a fan tester and the characteristics of detailed flow field obtained from the CFD simulation are closely examined. The strong vortex flow is observed in the vicinity of the tip of fan hub. Based on this result, new design is devised to reduce this vortex flow. As a result, it is numerically and experimentaly found that the volume flow rate of the new fan increases and the radiated noise decreases in comparison with the existing fan at the same rotation speed.

가솔린 기관 공연비 제어를 위한 흡기포트 내의 연료액막 모델링 (Modeling of Liquid Fuel Behavior to Control Air/Fuel Ratio in the Intake Port of SI Engines)

  • 조훈;민경덕;황승환;이종화
    • 대한기계학회논문집B
    • /
    • 제24권4호
    • /
    • pp.512-518
    • /
    • 2000
  • A wall fuel-film flow model is developed to predict the effect of a wall-fuel-film on air-fuel ratio in an SI engine in transient conditions. Fuel redistribution in the intake port resulting from charge backflow and a simple liquid fuel behavior in the cylinder are included in this model. Liquid fuel film flow is calculated of every crank angle degree using the instantaneous air flow rate. The model is validated by comparing the calculated results and corresponding engine experiment results of a commercial 4 cylinder DOHC engine. The predicted results match well with the experimental results. To maintain the constant air-fuel ratio during transient operation. the fuel injection rate control can be obtained from the simulation result.

유동제어 성형기술을 이용한 허브제품의 냉간단조 공정설계 (Process Design of Cold Forged Hub by Flow Control Forming Technique)

  • 박종남;김동환;김병민
    • 한국정밀공학회지
    • /
    • 제19권6호
    • /
    • pp.86-95
    • /
    • 2002
  • This paper suggests the new technology to control metal flow in order to reduce the number of preforming and the machining for the cold forged product with complex geometry. This technology is the combined forming that consists of bulk and sheet forming with double action dies. To analyze the process, finite element simulation has been performed. The proposed technology is applied to hub model that is part of air conditioner clutch. The purpose of this study is to investigate the material now of hub through the relative-velocity control of punch and mandrel using the flow control forming technique.

B/F형 냉장고 냉동실의 결빙원인에 관한 연구 (Fluid flow in the freezing compartment of the B/F Refrigerators)

  • 양수영;김윤규;박재성;정호윤;이연원
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2008년도 춘계학술대회논문집
    • /
    • pp.530-533
    • /
    • 2008
  • Refrigerators have some frost related problems in a freezing compartment. The frost formation in the refrigerator gives customers a bad impression concerning quality problems. Therefore, many engineers have been studying the optimum solution to avoid frost formation. But the problem of frost formation is very complex and hard to approach to the answer. The frost generation of a household refrigerator have been widely known that is closely related to the distribution of temperature inside the compartment. The distribution depends on the cold air circulation inside the refrigerator. So frost problem can be reduced and energy consumption efficiency also improved through optimization of air flow fields inside the freezing compartment. In this paper, numerical simulation has been carried out to check fluid flow. The variation of temperature at the walls was measured and quantitative analysis of frost generated from the freezing compartment was carried out. Through comparison between simulation and experiment, some correlation revealed.

  • PDF

냉장 컨테이너 내부의 공기유동 및 열전달 현상에 대한 CFD 시뮬레이션 (CFD Simulation of Airflow and Heat Transfer in the Cold Container)

  • 윤홍선;권진경;정훈;이현동;김영근;윤남규
    • Journal of Biosystems Engineering
    • /
    • 제32권6호
    • /
    • pp.422-429
    • /
    • 2007
  • To prevent deterioration of agricultural products during cold transportation, optimized temperature control is essential. Because the control of temperature and thermal uniformity of transported products are mainly governed by cooling air flow pattern in the transportation equipment, the accurate understanding and removal of appearance of stagnant air zone by poor ventilation is key to design of optimized cooling environment. The objectives of this study were to develop simulation model to predict the airflow and heat transfer phenomena in the cold container and to evaluate the effect of fan blowing velocity on the temperature level and uniformity of products using the CFD approach. Comparison of CFD prediction with PIV measurement showed that RSM turbulent model reveals the more reasonable results than standard $k-{\varepsilon}$ model. The increment of fan blowing velocity improved the temperature uniformity of product and reduced almost linearly the averaged temperature of product.