• 제목/요약/키워드: Cold-adapted esterase

검색결과 7건 처리시간 0.045초

A Cold-Adapted Carbohydrate Esterase from the Oil-Degrading Marine Bacterium Microbulbifer thermotolerans DAU221: Gene Cloning, Purification, and Characterization

  • Lee, Yong-Suk;Heo, Jae Bok;Lee, Je-Hoon;Choi, Yong-Lark
    • Journal of Microbiology and Biotechnology
    • /
    • 제24권7호
    • /
    • pp.925-935
    • /
    • 2014
  • A cold-adapted carbohydrate esterase, CEST, belonging to the carbohydrate esterase family 6, was cloned from Microbulbifer thermotolerans DAU221. CEST was composed of 307 amino acids with the first 22 serving as a secretion signal peptide. The calculated molecular mass and isoelectric point of the mature enzyme were 31,244 Da and pH 5.89, respectively. The catalytic triad consisted of residues Ser37, Glu192, and His281 in the conserved regions: GQSNMXG, QGEX(D/N), and DXXH. The three-dimensional structure of CEST revealed that CEST belongs to the ${\alpha}/{\beta}$-class of protein consisted of a central six-stranded ${\beta}$-sheet flanked by eight ${\alpha}$-helices. The recombinant CEST was purified by His-tag affinity chromatography and the characterization showed its optimal temperature and pH were $15^{\circ}C$ and 8.0, respectively. Specifically, CEST maintained up to 70% of its enzyme activity when preincubated at $50^{\circ}C$ or $60^{\circ}C$ for 6 h, and 89% of its enzyme activity when preincubated at $70^{\circ}C$ for 1 h. The results suggest CEST belongs to group 3 of the cold-adapted enzymes. The enzyme activity was increased by $Na^+$ and $Mg^{2+}$ ions but was strongly inhibited by $Cu^+$ and $Hg^{2+}$ ions, at all ion concentrations. Using p-nitrophenyl acetate as a substrate, the enzyme had a $K_m$ of 0.278 mM and a $k_{cat}$ of $1.9s^{-1}$. Site-directed mutagenesis indicated that the catalytic triad (Ser37, Glu192, and His281) and Asp278 were essential for the enzyme activity.

A Novel Esterase from Paenibacillus sp. PBS-2 Is a New Member of the ${\beta}$-Lactamase Belonging to the Family VIII Lipases/Esterases

  • Kim, Young-Ok;Park, In-Suk;Nam, Bo-Hye;Kim, Dong-Gyun;Jee, Young-Ju;Lee, Sang-Jun;An, Cheul-Min
    • Journal of Microbiology and Biotechnology
    • /
    • 제24권9호
    • /
    • pp.1260-1268
    • /
    • 2014
  • Screening of a gene library from Paenibacillus sp. PBS-2 generated in Escherichia coli led to the identification of a clone with lipolytic activity. Sequence analysis showed an open reading frame encoding a polypeptide of 378 amino acid residues with a predicted molecular mass of 42 kDa. The esterase displayed 69% and 42% identity with the putative ${\beta}$-lactamases from Paenibacillus sp. JDR-2 and Clostridium sp. BNL1100, respectively. The esterase contained a Ser-x-x-Lys motif that is conserved among all ${\beta}$-lactamases found to date. The protein PBS-2 was produced in both soluble and insoluble forms when E. coli cells harboring the gene were cultured at $18^{\circ}C$. The enzyme is a serine protein and was active against p-nitrophenyl esters of $C_2$, $C_4$, $C_8$, and $C_{10}$. The optimum pH and temperature for enzyme activity were pH 9.0 and $30^{\circ}C$, respectively. Relative activity of 55% remained at up to $5^{\circ}C$ with an activation energy of 5.84 kcal/mol, which indicates that the enzyme is cold-adapted. Enzyme activity was inhibited by $Cd^{2+}$, $Cu^{2+}$, and $Hg^{2+}$ ions. As expected for a serine esterase, activity was inhibited by phenylmethylsulfonyl fluoride. The enzyme was remarkably active and stable in the presence of commercial detergents and organic solvents. This cold-adapted esterase has potential as a biocatalyst and detergent additive for use at low temperatures.

Molecular Cloning, Purification, and Characterization of a Cold-Adapted Esterase from Photobacterium sp. MA1-3

  • Kim, Young-Ok;Heo, Yu Li;Nam, Bo-Hye;Kim, Dong-Gyun;Jee, Young-Ju;Lee, Sang-Jun;An, Cheul-Min
    • Fisheries and Aquatic Sciences
    • /
    • 제16권4호
    • /
    • pp.311-318
    • /
    • 2013
  • The gene encoding an esterase from Photobacterium sp. MA1-3 was cloned in Escherichia coli using the shotgun method. The amino acid sequence deduced from the nucleotide sequence (948 bp) corresponded to a protein of 315 amino acid residues with a molecular weight of 35 kDa and a pI of 6.06. The deduced protein showed 74% and 68% amino acid sequence identities with the putative esterases from Photobacterium profundum SS9 and Photobacterium damselae, respectively. Absence of a signal peptide indicated that it was a cell-bound protein. Sequence analysis showed that the protein contained the signature G-X-S-X-G included in most serine-esterases and lipases. The MA1-3 esterase was produced in both soluble and insoluble forms when E. coli cells harboring the gene were cultured at $18^{\circ}C$. The enzyme was a serine-esterase and was active against $C_2$, $C_4$, $C_8$ and $C_{10}$ p-nitrophenyl esters. The optimum pH and temperature for enzyme activity were pH 8.0 and $30^{\circ}C$, respectively. Relative activity remained up to 45% even at $5^{\circ}C$ with an activation energy of 7.69 kcal/mol, which indicated that it was a cold-adapted enzyme. Enzyme activity was inhibited by $Cd^{2+}$, $Cu^{2+}$, $Zn^{2+}$, and $Hg^{2+}$ ions.

Gene Cloning and Characterization of a Cold-Adapted Esterase from Acinetobacter venetianus V28

  • Kim, Young-Ok;Heo, Yu Li;Kim, Hyung-Kwoun;Nam, Bo-Hye;Kong, Hee Jeong;Kim, Dong-Gyun;Kim, Woo-Jin;Kim, Bong-Seok;Jee, Young-Ju;Lee, Sang-Jun
    • Journal of Microbiology and Biotechnology
    • /
    • 제22권9호
    • /
    • pp.1245-1252
    • /
    • 2012
  • Acinetobacter venetians V28 was isolated from the intestine of righteye flounder, Poecilopsetta plinthus caught in Vietnam seawater, and the esterase gene was cloned using a shotgun method. The amino acid sequence deduced from the nucleotide sequence (1,017 bp) corresponded to a protein of 338 amino acid residues with a molecular weight of 37,186. The esterase had 87% and 72% identities with the lipases of A. junii SH205 and A. calcoaceticus RUH2202, respectively. The esterase contained a putative leader sequence, as well as the conserved catalytic triad (Ser, His, Asp), consensus pentapeptide GXSXG, and oxyanion hole sequence (HG). The protein from the strain V28 was produced in both a soluble and an insoluble form when the Escherichia coli cells harboring the gene were cultured at $18^{\circ}C$. The maximal activity of the purified enzyme was observed at a temperature of $40^{\circ}C$ and pH 9.0 using p-NP-caprylate as substrate; however, relative activity still reached to 70% even at $5^{\circ}C$ with an activation energy of 3.36 kcal/mol, which indicated that it was a cold-adapted enzyme. The enzyme was a nonmetallo-protein and was active against p-nitrophenyl esters of $C_4$, $C_8$, and $C_{14}$. Remarkably, this enzyme retained much of its activity in the presence of commercial detergents and organic solvents. This cold-adapted esterase will be applicable as catalysts for reaction in the presence of organic solvents and detergents.

Molecular Cloning and Characterization of a Novel Cold-Adapted Family VIII Esterase from a Biogas Slurry Metagenomic Library

  • Cheng, Xiaojie;Wang, Xuming;Qiu, Tianlei;Yuan, Mei;Sun, Jianguang;Gao, Junlian
    • Journal of Microbiology and Biotechnology
    • /
    • 제24권11호
    • /
    • pp.1484-1489
    • /
    • 2014
  • A novel esterase gene, est01, was successfully unearthed from a biogas digester microbiota metagenomic library. The 1,194 bp est01 gene encodes a protein of 44,804 Da (designated Est01). The amino acid sequence of Est01 shows only moderate (33%) identity to a lipase/esterase. Phylogenetic analysis and biochemical characterization confirmed that Est01 is a new member of family VIII esterases. The purified Est01 from recombinant Escherichia coli BL21 (DE3) showed high hydrolytic activity against short-chain fatty acid esters, suggesting that it is a typical carboxylesterase rather than a lipase. Furthermore, the Est01 was even active at $10^{\circ}C$ (43% activity remained), with the optimal temperature at $20^{\circ}C$, and had a broad pH range from 5.0 to 10.0, with the optimal pH of 8.0. These properties suggest that Est01 is a cold-adaptive esterase and could have good potential for low-temperature hydrolysis application.

메타게놈유래의 저온성 에스터라제 EM2L8의 효소적 특성과 이를 활용한 고지혈증 치료제 키랄소재의 생산 (Characterization of a Psychrophilic Metagenome Esterase EM2L8 and Production of a Chiral Intermediate for Hyperlipemia Drug)

  • 정지혜;최윤희;이정현;김형권
    • 한국미생물·생명공학회지
    • /
    • 제37권2호
    • /
    • pp.118-124
    • /
    • 2009
  • 에스터라제 EM2L8 유전자를 E. coli 균에서 발현하고 에스터라제 활성을 분석한 결과, $40-45^{\circ}C$에서 최적의 효소활성을 보였다. $15^{\circ}C$에서 최대활성의 45% 활성을 보였고 $15-45^{\circ}C$ 사이의 활성화에너지는 4.9 kcal/mol로 계산됨으로써 전형적인 저온 적응효소인 것으로 밝혀졌다. 또한, $4^{\circ}C$에서 장기보관해도 효소활성이 전혀 줄어들지 않음을 통해서 저온에서 안정한 효소임을 알게 되었다. 반응액에 에탄올, 메탄올, 아세톤을 15% 농도까지 첨가해도 효소활성이 줄어들지 않았으며 DMSO의 경우, 40% 농도까지 첨가해도 효소활성이 유지되는 것으로 나타났다. 이 효소 40 U을 Tris-HCl 용액(1.2 mL, pH 9.0)에 넣고 $30^{\circ}C$에서 (R,S)-ECHB(0.5%, 38 mM)의 분해반응을 수행한 결과, 기질이 가수분해되어 CHBacid가 생성되며 기질의 분해속도는 $6.8\;{\mu}mole/h$로 계산되었다. (R)-ECHB 보다 (S)-ECHB 기질을 빠르게 분해하였으며 전환수율이 80%일 때, e.e.s 값이 40%로 측정되었다. 반응액에 DMSO를 10% (v/v) 농도로 각각 첨가한 결과, 기질의 분해 속도는 $10.4\;{\mu}mole/h$로 증가되었다. 하지만 DMSO의 유무와 상관없이 전환수율에 따른 e.e.s 값은 유사하게 나타났다. 결론적으로 이 효소는 저온과 각종 유기용매 하에서도 높은 안정성과 활성을 갖고 있기 때문에 각종 의약품의 유기합성공정에서 효소촉매로 활용될 수 있을 것으로 기대된다.

Organic Solvent-Tolerant Esterase from Sphingomonas glacialis Based on Amino Acid Composition Analysis: Cloning and Characterization of EstSP2

  • Dachuri, VinayKumar;Lee, ChangWoo;Jang, Sei-Heon
    • Journal of Microbiology and Biotechnology
    • /
    • 제28권9호
    • /
    • pp.1502-1510
    • /
    • 2018
  • Organic solvent-tolerant (OST) enzymes are widely applied in various industries for their activity and stability in organic solvents, for their higher substrate solubility, and for their greater stero-selectivity. However, the criteria for identifying OST enzymes largely remain undefined. In this study, we compared the amino acid composition of 19 OST esterases with that of 19 non OST esterases. OST esterases have increased the ratio of Ala and Arg residues and decreased the ratio of Asn, Ile, Tyr, Lys, and Phe residues. Based on our amino acid composition analysis, we cloned a carboxylesterase (EstSP2) from a psychrophilic bacterium, Sphingomonas glacialis PAMC 26605, and characterized its recombinant protein. EstSP2 is a substrate specific to p-nitrophenyl acetate and hydrolyzed aspirin, with optimal activity at $40^{\circ}C$; at $4^{\circ}C$, the activity is approximately 50% of its maximum. As expected, EstSP2 showed tolerance in up to 40% concentration of polar organic solvents, including dimethyl sulfoxide, methanol, and ethanol. The results of this study suggest that selecting OST esterases based on their amino acid composition could be a novel approach to identifying OST esterases produced from bacterial genomes.