DOI QR코드

DOI QR Code

Organic Solvent-Tolerant Esterase from Sphingomonas glacialis Based on Amino Acid Composition Analysis: Cloning and Characterization of EstSP2

  • Dachuri, VinayKumar (Department of Biomedical Science and Center for Bio-Nanomaterials, Daegu University) ;
  • Lee, ChangWoo (Department of Biomedical Science and Center for Bio-Nanomaterials, Daegu University) ;
  • Jang, Sei-Heon (Department of Biomedical Science and Center for Bio-Nanomaterials, Daegu University)
  • Received : 2018.06.16
  • Accepted : 2018.08.09
  • Published : 2018.09.28

Abstract

Organic solvent-tolerant (OST) enzymes are widely applied in various industries for their activity and stability in organic solvents, for their higher substrate solubility, and for their greater stero-selectivity. However, the criteria for identifying OST enzymes largely remain undefined. In this study, we compared the amino acid composition of 19 OST esterases with that of 19 non OST esterases. OST esterases have increased the ratio of Ala and Arg residues and decreased the ratio of Asn, Ile, Tyr, Lys, and Phe residues. Based on our amino acid composition analysis, we cloned a carboxylesterase (EstSP2) from a psychrophilic bacterium, Sphingomonas glacialis PAMC 26605, and characterized its recombinant protein. EstSP2 is a substrate specific to p-nitrophenyl acetate and hydrolyzed aspirin, with optimal activity at $40^{\circ}C$; at $4^{\circ}C$, the activity is approximately 50% of its maximum. As expected, EstSP2 showed tolerance in up to 40% concentration of polar organic solvents, including dimethyl sulfoxide, methanol, and ethanol. The results of this study suggest that selecting OST esterases based on their amino acid composition could be a novel approach to identifying OST esterases produced from bacterial genomes.

Keywords

References

  1. Tanaka A, Kawamoto T. 1991. Immobilized enzymes in organic solvents. Bioprocess Technol. 14: 183-208.
  2. Ogino H, Miyamoto K, Ishikawa H. 1994. Organic-solvent-tolerant bacterium which secretes organic-solvent-stable lipolytic enzyme. Appl. Environ. Microbiol. 60: 3884-3886.
  3. Ogino H, Miyamoto K, Yasuda M, Ishimi K, Ishikawa H. 1999. Growth of organic solvent-tolerant Pseudomonas aeruginosa LST-03 in the presence of various organic solvents and production of lipolytic enzyme in the presence of cyclohexane. Biochem. Eng. J. 4: 1-6. https://doi.org/10.1016/S1369-703X(99)00026-1
  4. Ogino H, Yasui K, Shiotani T, Ishihara T, Ishikawa H. 1995. Organic solvent-tolerant bacterium which secretes an organic solvent-stable proteolytic enzyme. Appl. Environ. Microbiol. 61: 4258-4262.
  5. Kumar A, Dhar K, Kanwar SS, Arora PK. 2016. Lipase catalysis in organic solvents: advantages and applications. Biol. Proced. Online 18: 1-11. https://doi.org/10.1186/s12575-015-0030-x
  6. Khmelnitsky YL, Levashov AV, Klyachko NL, Martinek K. 1988. Engineering biocatalytic systems in organic media with low water content. Enzyme Microb. Tech. 10: 710-724. https://doi.org/10.1016/0141-0229(88)90115-9
  7. Dordick JS. 1989. Enzymatic catalysis in monophasic organic solvents. Enzyme Microb. Tech. 11: 194-211. https://doi.org/10.1016/0141-0229(89)90094-X
  8. Gupta MN. 1992. Enzyme function in organic solvents. Eur. J. Biochem. 203: 25-32. https://doi.org/10.1111/j.1432-1033.1992.tb19823.x
  9. Schulze B, Klibanov AM. 1991. Inactivation and stabilization of stabilisins in neat organic solvents. Biotechnol. Bioeng. 38: 1001-1006. https://doi.org/10.1002/bit.260380907
  10. Gorman LA, Dordick JS. 1992. Organic solvents strip water off enzymes. Biotechnol. Bioeng. 39: 392-397. https://doi.org/10.1002/bit.260390405
  11. Trodler P, Pleiss J. 2008. Modeling structure and flexibility of Candida antarctica lipase B in organic solvents. BMC Struct. Biol. 8: 9. https://doi.org/10.1186/1472-6807-8-9
  12. Dachuri V, Boyineni J, Choi S, Chung H-S, Jang S-H, Lee C. 2016. Organic solvent-tolerant, cold-adapted lipases PML and LipS exhibit increased conformational flexibility in polar organic solvents. J. Mol. Catal. B: Enzym. 131: 73-78. https://doi.org/10.1016/j.molcatb.2016.06.003
  13. Hwang S, Shao Q, Williams H, Hilty C, Gao YQ. 2011. Methanol strengthens hydrogen bonds and weakens hydrophobic interactions in proteins--a combined molecular dynamics and NMR study. J. Phys. Chem. B. 115: 6653-6660. https://doi.org/10.1021/jp111448a
  14. Moore JC, Arnold FH. 1996. Directed evolution of a para-nitrobenzyl esterase for aqueous-organic solvents. Nat. Biotechnol. 14: 458-467. https://doi.org/10.1038/nbt0496-458
  15. Martinez P, Van Dam ME, Robinson AC, Chen K, Arnold FH. 1992. Stabilization of substilisin E in organic solvents by site-directed mutagenesis. Biotechnol. Bioeng. 39: 141-147. https://doi.org/10.1002/bit.260390204
  16. Korman TP, Sahachartsiri B, Charbonneau DM, Huang GL, Beauregard M, Bowie JU. 2013. Dieselzymes: development of a stable and methanol tolerant lipase for biodiesel production by directed evolution. Biotechnol. Biofuels. 6: 70. https://doi.org/10.1186/1754-6834-6-70
  17. Chen KQ, Robinson AC, Van Dam ME, Martinez P, Economou C, Arnold FH. 1991. Enzyme engineering for nonaqueous solvents. II. Additive effects of mutations on the stability and activity of subtilisin E in polar organic media. Biotechnol. Prog. 7: 125-129. https://doi.org/10.1021/bp00008a007
  18. Horvath C. 1974. Pellicular immobilized enzymes. Biochim. Biophys. Acta 358: 164-177. https://doi.org/10.1016/0005-2744(74)90268-X
  19. Lee C, Jang S-H, Chung H-S. 2017. Improving the stability of cold-adapted enzymes by immobilization. Catalysts 7: 112. https://doi.org/10.3390/catal7040112
  20. Inada Y, Takahashi K, Yoshimoto T, Ajima A, Matsushima A, Saito Y. 1986. Application of polyethylene glycol-modified enzymes in biotechnological processes: organic solvent-soluble enzymes. Trends Biotechnol. 4: 190-194. https://doi.org/10.1016/0167-7799(86)90244-1
  21. Okahata Y, Mori T. 1997. Lipid-coated enzymes as efficient catalysts in organic media. Trends Biotechnol. 15: 50-54. https://doi.org/10.1016/S0167-7799(97)84203-5
  22. Ogino H, Ishikawa H. 2001. Enzymes which are stable in the presence of organic solvents. J. Biosci. Bioeng. 91: 109-116. https://doi.org/10.1016/S1389-1723(01)80051-7
  23. Lee YM, Kim G, Jung YJ, Choe CD, Yim JH, Lee HK, et al. 2012. Polar and alpine microbial collection (PAMC): a culture collection dedicated to polar and alpine microorganisms. Polar Biol. 35: 1433-1438. https://doi.org/10.1007/s00300-012-1182-7
  24. Shin SC, Ahn DH, Lee JK, Kim SJ, Hong SG, Kim EH, et al. 2012. Genome sequence of Sphingomonas sp. strain PAMC 26605, isolated from Arctic lichen (Ochrolechia sp.). J. Bacteriol. 194: 1607. https://doi.org/10.1128/JB.00004-12
  25. Chun J, Lee JH, Jung Y, Kim M, Kim S, Kim BK, et al. 2007. EzTaxon: a web-based tool for the identification of prokaryotes based on 16S ribosomal RNA gene sequences. Int. J. Syst. Evol. Microbiol. 57: 2259-2261. https://doi.org/10.1099/ijs.0.64915-0
  26. Zhang DC, Busse HJ, Liu HC, Zhou YG, Schinner F, Margesin R. 2011. Sphingomonas glacialis sp. nov., a psychrophilic bacterium isolated from alpine glacier cryoconite. Int. J. Syst. Evol. Microbiol. 61: 587-591. https://doi.org/10.1099/ijs.0.023135-0
  27. Kyte J, Doolittle RF. 1982. A simple method for displaying the hydropathic character of a protein. J. Mol. Biol. 157: 105-132. https://doi.org/10.1016/0022-2836(82)90515-0
  28. Markowitz VM, Chen IM, Palaniappan K, Chu K, Szeto E, Grechkin Y, et al. 2012. IMG: the Integrated Microbial Genomes database and comparative analysis system. Nucleic Acids Res. 40: D115-122. https://doi.org/10.1093/nar/gkr1044
  29. Nakamura AM, Nascimento AS, Polikarpov I. 2017. Structural diversity of carbohydrate esterases. Biotechnol. Res. Innov. 1: 35-51. https://doi.org/10.1016/j.biori.2017.02.001
  30. Cameron GW, Jordan KN, Holt PJ, Baker PB, Lowe CR, Bruce NC. 1994. Identification of a heroin esterase in Rhodococcus sp. strain H1. Appl. Environ. Microbiol. 60: 3881-3883.
  31. Pereira MR, Maester TC, Mercaldi GF, de Macedo Lemos EG, Hyvonen M, Balan A. 2017. From a metagenomic source to a high-resolution structure of a novel alkaline esterase. Appl. Microbiol. Biotechnol. 101: 4935-4949. https://doi.org/10.1007/s00253-017-8226-4
  32. Bahar FG, Imai T. 2013. Aspirin hydrolysis in human and experimental animal plasma and the effect of metal cations on hydrolase activities. Drug Metab. Dispos. 41: 1450-1456. https://doi.org/10.1124/dmd.113.051805
  33. Hong DK, Jang S-H, Lee C. 2016. Gene cloning and characterization of a psychrophilic phthalate esterase with organic solvent tolerance from an Arctic bacterium Sphingomonas glacialis PAMC 26605. J. Mol. Catal. B: Enzym. 133: S337-S345. https://doi.org/10.1016/j.molcatb.2017.02.004
  34. Tutino ML, di Prisco G, Marino G, de Pascale D. 2009. Cold-adapted esterases and lipases: from fundamentals to application. Protein Pept. Lett. 16: 1172-1180. https://doi.org/10.2174/092986609789071270
  35. Sood S, Sharma A, Sharma N, Kanwar SS. 2016. Carboxylesterases: sources, characterization and broader applications. Insight Enzy. Res. 1: 1-11.
  36. Hong S, Lee C, Jang SH. 2012. Purification and properties of an extracellular esterase from a cold-adapted Pseudomonas mandelii. Biotechnol. Lett. 34: 1051-1055. https://doi.org/10.1007/s10529-012-0866-y
  37. Dou S, Kong XD, Ma BD, Chen Q, Zhang J, Zhou J, et al. 2014. Crystal structures of Pseudomonas putida esterase reveal the functional role of residues 187 and 287 in substrate binding and chiral recognition. Biochem. Biophys. Res. Commun. 446: 1145-1150. https://doi.org/10.1016/j.bbrc.2014.03.072
  38. Santiago M, Ramirez-Sarmiento CA, Zamora RA, Parra LP. 2016. Discovery, molecular mechanisms, and industrial applications of cold-active enzymes. Front. Microbiol. 7: 1408.
  39. Kawata T, Ogino H. 2009. Enhancement of the organic solvent-stability of the LST-03 lipase by directed evolution. Biotechnol. Prog. 25: 1605-1611.
  40. Kawata T, Ogino H. 2010. Amino acid residues involved in organic solvent-stability of the LST-03 lipase. Biochem. Biophys. Res. Commun. 400: 384-388. https://doi.org/10.1016/j.bbrc.2010.08.080
  41. Affleck R, Haynes CA, Clark DS. 1992. Solvent dielectric effects on protein dynamics. Proc. Natl. Acad. Sci. USA 89: 5167-5170. https://doi.org/10.1073/pnas.89.11.5167
  42. Dachuri V, Boyineni J, Choi S, Chung H-S, Jang S-H, Lee C. 2016. Organic solvent-tolerant, cold-adapted lipases PML and LipS exhibit increased conformational flexibility in polar organic solvents. J. Mol. Catal. B Enzym. 131: 73-78. https://doi.org/10.1016/j.molcatb.2016.06.003
  43. Wang Y, Ryu BH, Yoo W, Lee CW, Kim KK, Lee JH, et al. 2018. Identification, characterization, immobilization, and mutational analysis of a novel acetylesterase with industrial potential (LaAcE) from Lactobacillus acidophilus. Biochim. Biophys. Acta 1862: 197-210. https://doi.org/10.1016/j.bbagen.2017.10.008
  44. Ribera J, Estupinan M, Fuentes A, Fillat A, Martinez J, Diaz P. 2017. Bacillus sp. JR3 esterase LipJ: A new mesophilic enzyme showing traces of a thermophilic past. PLoS One 12: e0181029. https://doi.org/10.1371/journal.pone.0181029

Cited by

  1. Characterization of an alkaline esterase from an enriched metagenomic library derived from an oil-spill area vol.62, pp.1, 2018, https://doi.org/10.3839/jabc.2019.011