• Title/Summary/Keyword: Cold heat source

Search Result 128, Processing Time 0.023 seconds

An Experimental Study on Sea Water Freezing Behavior in a Cooled Circular Tube (원관내의 해수동결거동에 관한 실험적연구)

  • 김명준
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.22 no.5
    • /
    • pp.680-686
    • /
    • 1998
  • In the adoption of a desalination system the most important factor is the cost of fresh water pro-duction. In general LNG is stored in a tank as a liquid state below $-162^{\circ}C$ When it is serviced however the LNG absorbs energy from a heat source and it is transformed to a high pressure gaseous state. During this process a huge amount of cold energy accumulated in cooling LNG is wasted. This wasted cold energycan be utilized to produce fresh water by using a sea water freez-ing desalination system. in order to develop a sea water freezing desalination system and to estab-lish its design technique qualitative and quantitative data regarding the freezing behavior of sea water is required in advance. The goals of this study are to reveal the freezing mechanisms of sea water in a cooled circular tube to measure the freezing rate and to investigate the freezing heat-transfer characteristics. The experimental results provide a general understanding of sea water freezing behavior in a cooled circular tube.

  • PDF

Thermodynamic Analysis of Power Generation Cycle Utilizing LNG Cold Energy (LNG 냉열을 이용하는 동력사이클 열역학 해석)

  • 최권일;장홍일
    • Progress in Superconductivity and Cryogenics
    • /
    • v.1 no.1
    • /
    • pp.48-55
    • /
    • 1999
  • thermodynamic cycle analysis has been performed for the power generation systems to utilize the cold energy of liquefied natural gas (LNG). The power cycle used the air or water at room temperature as a heat source and the LNG at cryogenic temperature as a heat sink. Among manypossible configurations of the cycle. the open Rankine cycle. and the closed Brayton cycle, and the closed Rankine cycle are selected for the basic analysis because of their practical importance. The power output per unit mass of LNG has been analytically calculated for various design parameters such as the pressure ratio. the mass flow rate. the adiabatic efficiency. the heat exchanger effectiveness. or the working fluid. The optimal conditions for the parameters are presented to maximize the power output and the design considerations are discussed. It is concluded that the open Rankine cycle is the most recormmendable both in thermodynamic efficency and in practice.

  • PDF

Thermodynamic Performance Analysis of Ammonia-Water Power Generation System Using Low-temperature Heat Source and Liquefied Natural Gas Cold Energy (저온 열원과 LNG 냉열을 이용하는 암모니아-물 동력 사이클의 열역학적 성능 해석)

  • Kim, Kyoung Hoon;Kim, Kyung Chun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.38 no.6
    • /
    • pp.483-491
    • /
    • 2014
  • In this study, a thermodynamic analysis was carried out for a combined power generation system using a low-temperature heat source in the form of sensitive energy and liquefied natural gas cold energy. An ammonia-water mixture, which is a zeotropic mixture, was used as the working fluid, and systems with and without a regenerator were comparatively analyzed. The effects of the mass fraction of ammonia and the condensation temperature of the working fluid on the system variables, including the net work production, exergy destruction, and thermal and exergy efficiencies, are analyzed and discussed. The results show that the performance characteristics of the system varied sensitively with the ammonia concentration or condensation temperature of the working fluid. The system without regeneration was found to be better in relation to the net work per unit mass of the source fluid, whereas the system with regeneration was better in relation to the thermal or exergy efficiency.

Maximum Power Output Cycle of Heat Engines (열기관의 최대출력 사이클)

  • 김수연;정평석;노승탁;김효경
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.14 no.3
    • /
    • pp.694-701
    • /
    • 1990
  • The cycle of heat engine which produces the maximum power output is constructed when heat sources are finitely constant, and the maximum power as a thermodynamic limit of the engine, is obtained. The characteristics of the maximum power cycle are as follows, which represent the operation conditions and design conditions of the heat engine to produce the maximum power output. In heat exchangers, the temperature profiles of the heat source and the working fluid have the same functional formula and the ratio of the working fluid temperature to the heat source temperature is constant. When heat capacity flow rates(product of the specific heat and the mass flow rate) of the working fluid as well as the heat source are constant, the values of those of working fluid exist between those of two heat sources. The relation of the temperature and the heat capacity flow rate is established without the states of the heat sources and the capacities of heat exchangers, which is ( $T_{h}$/ $T_{H}$)( $C_{h}$/ $C_{H}$)=( $T_{1}$/ $T_{L}$)( $c_{1}$/ $c_{L}$)=1. The capacity of the heat exchanger of hot side is equal to that of cold side regardless of the states of the heat sources and the total capacities of heat exchangers.hangers.ers.

A Closed Counter-Current Two-Phase Thermosyphon Loop of a Cold Neutron Source in HANARO Research Reactor (하나로 원자로에 설치될 대향 이상 열사이펀 루프에 관한 실험)

  • Hwang, Kwon-Sang;Cho, Man-Soon;Sung, Hyung-Jin
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.8
    • /
    • pp.1038-1045
    • /
    • 2000
  • An experimental study was carried out to delineate the flow characteristics in a closed countescurrent two-phase thermo syphon with concentric tubes. This is to be installed in the HANARO research reactor as a part of a Cold Neutron Source(CNS). In the present investigation, experiments ata room temperature with Freon-II3 as a moderator were performed. Results show that, based on the magnitude of pressure fluctuation, the flow regimes could be divided into 4 distinct ones in the ($V_f,\;Q_i$) plane, where $V_f$ represents the volume of the charged liquid and $Q_i$ the heat load: a stable flow regime, an oscillatory flow regime, a restablized flow regime and a dryout flow regime. For $V_f$>2.5l, the flow is stable at low $Q_i$. However, as $Q_i$ increases, the flow becomes oscillatory and finally restablizes As $V_f$ increases, the oscillation amplitude decreases, reaching to the restablized flow region at low $Q_i$, and the liquid level in the moderator cell remains high. In the oscillatory flow regimes, for a fixed VI; the oscillating period of time varies with $Q_i$, having a minimum value at a certain value of $Q_i$. The heat load, where the oscillating period of time is minimum, decreases as $V_f$ increases.

Transient heat conduction in rock mass around arch shape cold storage cavern and estimation of in-situ thermal properties (아치형 냉동저장공동 주위암반의 비정상상태 열전도 특성 및 열물성 평가)

  • Synn, Joong-Ho;Park, Yeon-Jun;Kim, Ho-Yeong;Park, Chan
    • Tunnel and Underground Space
    • /
    • v.9 no.1
    • /
    • pp.27-35
    • /
    • 1999
  • The characteristics of heat conduction for the heat source boundary like an arch shape cavern are different from those for the semi-infinite or circular boundary which can be driven theoretically. A new form of transient heat conduction equation in rock mass around the arch shape cavern is evaluated with analyzing the pattern of the rock temperature distribution measured at the cold storage pilot plant. The new equation, which is driven by adopting a shape function, $SF=\sqrt{logx_0/log(x_0+x)}$ to the solution for a semi-infinite boundary, has the semi-radial form of temperature variation with distance. And, thermal properties of rock mass are estimated by comparing the rock temperature distributions by this equation with those by measurement. Thermal conductivity and specific heat of rock mass are estimated as giving the difference of 20~25% compared to those of laboratory scale. This difference seems to be caused by discontinuity like joint and water content in rock mass.

  • PDF

A Study on the Characteristics of Natural Convection in a Partially Opened Enclosure with a Heat Source (발열체와 부분 열림 수직벽을 갖는 사각 공간내 자연대류 특성 해석)

  • Shim, Dong-Sik;Kang, Bo-Seon;Cha, Dong-Jin;Ju, Won-Jong
    • Proceedings of the KSME Conference
    • /
    • 2000.04b
    • /
    • pp.322-327
    • /
    • 2000
  • Natural convection heat transfer in an enclosure with an opening in the right vertical wall and a heat source at the bottom surface is investigated using a holographic interferometric technique. The effects of the opening length, divider length attached to the top wall, and heater temperature on the temperature distribution are examined. The openging length as well as the divider length greatly affects the degree of inflow and outflow of air. With a small opening, the opening doesn't affect much the upward warm air flow resulting in the symmetric temperature distribution. On the other hand, with the increase of the opening length, the inward cold flow moves the upward flow to the left direction. With the increase of the divider length, temperature in the lower region of enclosure becomes higher for the small opening and lower for the large opening.

  • PDF

A Study on the Energy Storage System Using Air Source Heat Pump for Heating and Cooling (공기 열원을 이용한 축열식 냉난방 시스템 연구)

  • Kim, Ook-Joong;Lee, Kong-Hoon;Seo, Jeong-Kyun
    • Proceedings of the SAREK Conference
    • /
    • 2006.06a
    • /
    • pp.1125-1130
    • /
    • 2006
  • An air source heat pump system producing the ice and water storage energy for cooling and heating of building has been proposed. Cycle design and simulation considering energy balance between heating and cooling capacity has been carried out. The roles of the capacity controlled compressor, refrigerant heating device and air preheating are investigated in detail. System control logic for meeting the predetermined heating capacity when the system is operated at cold climate condition is suggested. Some anticipated problems of the proposed system are also described.

  • PDF

Thermodynamic Performance Characteristics of Transcritical Organic Rankine Cycle Depending on Source Temperature and Working Fluid (열원온도와 작동유체에 따른 초월임계 유기랭킨사이클의 열역학적 성능 특성)

  • Kim, Kyoung Hoon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.41 no.11
    • /
    • pp.699-707
    • /
    • 2017
  • This study presents a comparative thermodynamic analysis of subcritical and transcritical organic Rankine cycles for the recovery of low-temperature heat sources considering nine substances as the working fluids. The effects of the turbine inlet pressure, source temperature, and working fluid on system performance were all investigated with respect to metrics such as the temperature distribution of the fluids and pinch point in the heat exchanger, mass flow rate, and net power production, as well as the thermal efficiency. Results show that as the turbine inlet pressure increases from the subcritical to the supercritical range, the mismatch between hot and cold streams in the heat exchanger decreases, and the net power production and thermal efficiency increase; however, the turbine size per unit power production decreases.

A Study on the Horizontal Ground Source Beat Pump Greenhouse Heating System with Thermal Storage Tank (축열조를 채용한 수평형 지열원 히트펌프 온실 난방 시스템에 관한 연구)

  • Park, Yong-Jung;Kim, Kyoung-Hoon
    • Journal of Energy Engineering
    • /
    • v.15 no.3 s.47
    • /
    • pp.194-201
    • /
    • 2006
  • Greenhouses should be heated during nights and cold days in order to fit growth conditions in greenhouses. Ground source heat pump (GSHP) systems are recognized to be outstanding heating and cooling systems. A horizontal GSHP system with thermal storage tank was installed in greenhouse and investigated the performance characteristics. The reasons for using thermal storage tank were discussed in detail. Thermal storage tank can provide heat for heating load that is larger than GSHP system heating capacity. The results of study showed that the heating coefficient of performance of the heat pump system was 2.69.