• Title/Summary/Keyword: Cold forging punch

Search Result 42, Processing Time 0.027 seconds

Process Design of Shaft Considering Effect of Preform and Eccentric Load on Cold Forging Product in Multistage Former of Horizontal Type (수평식 냉간 다단포머에서 예비성형체와 편심하중을 고려한 Shaft의 성형공정설계)

  • Park S. S.;Lee J. M.;Kim B. M.
    • Transactions of Materials Processing
    • /
    • v.14 no.1 s.73
    • /
    • pp.57-64
    • /
    • 2005
  • This study deals with the cold forging process design for shaft in the main part of automobile motors with rectangular deep groove. In forging process, the accuracy and die lift is very important because it have influence on reduction of the production cost and the increase of the production rate. Therefore, it is necessary to develop the manufacturing process of shaft by cold forging., process variables are the cropped face angle of billet and the eccentric load of punch. The former is derived from cropping test, the latter is occurred by clearance between container and preform. Also, grooved preform select the process variable for decrease in punch deflection. We investigate that a deflection of punch and a deformation of preform to every process variables. Through this investigation, we suggest the optimal preform and process design, expect to be improved the tool life in forging process.

Effect of TiN-Coating on a Punch on Surface Quality of a Cold Forging Automotive Bearing Shaft (냉간 단조용 펀치의 TiN 코팅처리에 따른 자동차 베어링축의 표면 영향에 관한 연구)

  • Kim H.J.;Lee S.W.;Kang S.M.;Joun B.Y.;Joun M.S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2004.05a
    • /
    • pp.143-147
    • /
    • 2004
  • In this paper, effect of TiN-coating on product quality such as dimensional accuracy and surface roughness is experimentally investigated. A punch of SKD11 material in cold forging of an automotive bearing shaft and its related process found in a cold forging company ate selected as the test example. The effect of TiN-coating is revealed in a quantitative manner. It is to be noted that TiN-coating is effective in controlling the dimensional accuracy and surface roughness as well as in increasing tool lift.

  • PDF

Development of a Torsion Joint Yoke for Motor-Driven Power Steering System Using a Double-Action Extrusion Process (더블-액션 압출공정을 적용한 전동조향장치용 토션조인트 요크 개발)

  • Kim, H.M.;Kim, Y.K.;Park, Y.B.
    • Transactions of Materials Processing
    • /
    • v.21 no.8
    • /
    • pp.473-478
    • /
    • 2012
  • The yoke, a component of conventional motor-driven power steering system, often contains welding defects from its manufacturing process. To eliminate these defects, the precision cold forging process has been tried. In this study, the double-action complex forging has been used to manufacture a torsion joint yoke. The backward extrusion proved faster than the forward extrusion in forging of the product. The double-action complex forging process utilized an upper die composed of a punch, a punch guide, a disc spring and a coil spring. The forged material pushes up the punch guide, and then the disc spring and the coil spring balances the backward extrusion force. Consequently, the flow of material was essentially in the forward direction, resulting in a successful forging operation. The forging load of Al 6061-T6 was higher than that of the automotive structural hot rolled plate.

A study on the cold heading process design optimization by taguchi method (다구찌법을 활용한 헤딩공정설계 최적화 연구)

  • Joon Hwang;Jin-Hwan Won
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.33 no.6
    • /
    • pp.216-225
    • /
    • 2023
  • This paper describes the finite element analysis and die design change of cold heading punching process to increase the cold forging tool life and reduce the tool wear and stress concentration. Through this study, the optimization of punch tool design has been studied by an analysis of tool stress and wear distribution to improve the tool life. Plastic deformation analysis was carried out in order to understand the cold heading process between tool and workpiece stress distribution. Cold heading punch die design was set up to each process with different four types analysis progressing, the cold heading punch dies shapes with combination of point angle and punch edge corner radius shapes of cold forging dies, punch die material properties and frictional coefficient. The design parameters of point angle and corner radius of punch die geometry, die material properties and frictional coefficient were selected to apply optimization with the DoE (design of experiment) and Taguchi method. DoE and Taguchi method was performed to optimize the cold heading punch die design parameters optimization for bolt head cold forging process, it was possible to expect an reduce the cold heading punch die wear to the 37 % compared with current using cold heading punch in the shop floor.

Evaluation of water-Soluble Lubricant for Cold Forging and Optimization of Coating Process (냉간단조용 수용성 윤활제의 평가 및 윤활 처리 공정의 최적화)

  • Lim, W.J.;Lee, I.S.;Je, J.S.;Ko, D.C.;Kim, B.M.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2007.05a
    • /
    • pp.149-154
    • /
    • 2007
  • The zinc prosphate film treatments used to lubricating treatment of mostly cold forging processes. But there are several problems happened to lubricating treatment process such as happening harmful environment on person, complex lubrication processing occurring in energy and time consumption, eco-destructive and chemical by-product generation, the needs of waste disposal etc. As a result, a water-soluble lubricant was developed to replace the perfect or some of the zinc prosphate film in the world. In order to solve these problems, this study evaluated the performance of the typical water-soluble. In this study, for these requirement inquiry of two part. First, about possibility of replace zinc phosphate lubricant, quantitatively evaluation developed of water-soluble lubricant for cold forging vs zinc phosphate lubricant. Second, About optimization of coating Process use to equipment with practicable automatic coating Process. The performance evaluation of these lubricants was conducted using the double cup extrusion test and spike forging test. With the use of the commercial FE code DEFORM, friction factor calibration curves, i.e. cup height ratio vs. punch stroke and spike height vs. punch stroke, were established for different friction factor values. By matching the cup height ratio and the punch stroke and spike height vs. punch stroke from experiment to that obtained from FE simulations, the friction factor of the lubricants was determined. Survey of comparative analysis use to SEM that sprayed lubricant surface structure of grain shape and characteristic of lubricant performance based on grain shape and deformed lubricant surface expansion. As a result, developed lubricant were found to perform comparable to or better than zinc phosphate. And thought this result, innovatively cope with generated problem of existing lubrication process.

  • PDF

Upper-bound Analysis for Cold Forging of Helical Gear ( II ) (헬리컬 기어의 냉간단조에 관한 상계해석 (II))

  • Choi, Jae-Chan;Tak, Sung-Jun;Choi, Young
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.11a
    • /
    • pp.144-149
    • /
    • 1996
  • In this paper, the clamping type forging of helical gears has been investigated. Clamping type forging is an operation in which the product is constrained to extrude sideways through an orifice in the container wall. Punch is cylindrical shaped. The punch compresses a cylindrical billet placed in a die insert. As a consequence the material flows in a direction perpendicular to that of punch movement. The forging has been analysed by using the upper-bound method. A kinematically admissible velocity field has been developed, wherein, an involute curve has been introduced to represent tooth profile of the gear. Numerical calculations have been carried out to investigate the effects of various parameters, such as module, number of teeth, helix angle, friction factor and initial height of billet on the forging of helical gears.

  • PDF

A Research on the Life Span extension of Die Block in Cold Forging Die (냉간단조금형에서 다이블록의 수명연장에 관한 연구)

  • Kim, Sei-Hwan;Choi, Kye-Kwang
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.9 no.2
    • /
    • pp.281-285
    • /
    • 2008
  • Die hobbing is one of the dieblock manufacturing methods of cold forging die, which makes the upper side of dieblock indented using master punch, hobb to produce impression not using cutting work. SKD11, alloy tool steel was used as the material of dieblock and stainless sheet metal was used as product material in cold forging work. The life span of the die was 6,000 strokes. In this research, the material of dieblock was changed into SKH51, the high speed tool steel and the product material was S45C, the carbon steel in the cold forging work. The life span of the die was 21,000 strokes, which is 350% of the life span of the die using the former method.

The Study for Cold Forging of Spline with Different Friction Factor on Die Surface (금형면 마찰조건을 달리한 스플라인 단조에 관한 연구)

  • Kim, Kwan-Woo;Lee, Seok-Jin;Kim, Moon-Ki;Cho, Seong-Yeol;Cho, Hae-Yong
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.33 no.2
    • /
    • pp.295-303
    • /
    • 2009
  • Forging of square spline was investigated by using finite element methods in this study. Spline is widely used by torque transmitter in the fields of automobile, aircraft, and shipping etc. Friction on the surface of die is regarded as the most important factor to improve the dimensional accuracy for complete forming of spline teeth. Finite element simulation was carried out to improve the formability of the spline, especially remove unnecessary burrs which were extruded in gap between the die and the punch. To remove the burrs, various friction factors are considered on the surfaces of the die in the simulations and punch flat surface was designed. The simulated results were compared with experimental ones. As a results, it is possible to control the growth of burrs and improve formability of spline teeth by applying various friction factors and design of punch flat surface.

Experimental Study on Effect of TiN - Coating on a Cold Forging in Surface Characteristics (냉간단조 공정에서 TiN 코팅이 제품의 표면특성에 미치는 영향에 관한 실험적 연구)

  • Kim Hae Ji;Lee Sang Wook;Kang Sang Myoung;Joun Byung Yun;Joun Man Soo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.1
    • /
    • pp.47-52
    • /
    • 2005
  • In this paper, the effect of TiN-coating on product quality such as dimensional accuracy and surface roughness is experimentally investigated. A punch of SKD11 material in cold forging an automotive bearing shaft and its related process found in a cold forging company are selected as the test example. The effect of TiN-coating is revealed in a quantitative manner. It is to be noted that TiN-coating is effective in controlling the dimensional accuracy and surface roughness as well as in increasing tool lift.

Development of Environmentally Friendly Water-Soluble Lubricant for Cold Forging (냉간단조용 친환경 수용성 윤활제의 개발)

  • Lee, I.S.;Kang, J.H.;Kim, Y.R.;Je, J.S.;Ko, D.C.;Kim, B.M.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2006.05a
    • /
    • pp.195-198
    • /
    • 2006
  • Zinc phosphate coating is required in nearly all steel cold forging operations. However, the chemical byproducts of this lubricant system are difficult to dispose of and have a negative environmental impact. In order to replace zinc phosphate based lubricants partially or completely, candidate lubricant has been developed in this study. The performance evaluation of these lubricants was conducted using the double cup extrusion test and spike forging test. With the use of the commercial FEM code DEFORM, friction factor calibration curves, i.e. cup height ratio vs. punch stroke and spike height vs. punch stroke, were established for different friction factor values. By matching the cup height ratio and the punch stroke and spike height vs. punch stroke from experiment to that obtained from FE simulations, the friction factor of the lubricants was determined. Three water-soluble lubricants; namely, Mec Homat, Royalcoat, and the developed lubricant were found to perform comparable to or better than zinc phosphate.

  • PDF