• Title/Summary/Keyword: Cold climate season

Search Result 62, Processing Time 0.028 seconds

Seasonal Onset and Duration in South Korea (우리나라 사계절 개시일과 지속기간)

  • Choi, Gwang-Yong;Kwon, Won-Tae;Robinson David A.
    • Journal of the Korean Geographical Society
    • /
    • v.41 no.4 s.115
    • /
    • pp.435-456
    • /
    • 2006
  • This study examines the long-term spatial patterns and recent trends of seasonal onsets and durations defined by daily temperatures in South Korea for the period 1973-2004. Spatially, spring and winter onset dates show approximately 44 day and 63 day maximum difference respectively between south and north (Seongsanpo to Daegwallryeong) attributable to the impacts of latitudes and altitudes. In contrast, summer onset, which is more affected by proximity to oceans and altitudes than by latitudes, begins earlier in interior low elevated areas than in the coastal areas but earliest at higher latitudes than Jeiu Island. Five climatic types regarding the seasonal cycles in South Korea are spatially clustered according to the combination of longer seasonal durations. As a reflection of recent climate changes on seasonal cycles in South Korea, winter duration was shortened by 10 days during the post-1988 period due to a late winter onset of 4 days and an early spring onset of 6 days. The winter reduction began in the southern regions of the Korean Peninsula in the mid-1980s and spread northward during the 1990s period, ultimately appearing everywhere. In urbanized cities, where much of the surface is covered with asphalt or concrete, the winter reduction was intensified and summer duration was locally incremented. The reduced winter duration in recent decades shows significant teleconnections with variations of geopotential height (925hPa) in the eastern Arctic region ($0-90^{\circ}E$, $65-85^{\circ}N$) during the cold season. The reduction in winter duration in South Korea agrees with results in overall global warming trends as a climate change signal.

Numerical Simulation on the Wind Ventilation Lane and Air Pollutants Transport due to Local Circulation Winds in Daegu Districts (대구지역의 국지순환풍의 환기경로 및 대기오염수송에 관한 수치모의)

  • Koo, Hyun-Suk;Kim, Hae-Dong
    • Journal of the Korean earth science society
    • /
    • v.25 no.6
    • /
    • pp.418-427
    • /
    • 2004
  • Recently, urban planning with consideration of urban climate, represented by the concept of urban ventilation lane is widely practiced in many countries. The concept of urban ventilation lane is mainly aimed to improve the thermal comfort within urban area in summer season. It has also the aim to reduce the urban air pollution by natural cold air drainage flows which are to be intensified by a suitable alignment of buildings as well as use zonings based on scientific reasons. In this study, the prevailing wind ventilation lane of a local wind circulation and around Daegu for a typical summer days was investigated by using a numerical simulation. The transport of air pollutants by the local circulation winds was also investigated by using the numerical simulation model, the RAMS (Reasonal Atmospheric Model System).The domain of interest is the vicinity of Daegu metropolitan city (about 900 km2). The horizontal scale of the area is about 30 km. The simulations were conducted under a late spring synoptic condition with weak gradient wind and almost clear sky. From the numerical experiment, the following three conclusions were obtained: (1) The major wind passages of the local circulation wind generated by radiative cooling over the representative mountains of Daegu (Mt. Palgong and Mt. Ap) were found. The winds blow down along the valley axis over the eastern part of Daegu as a gravity flow during nighttime. (2) At the flatland, the winds blow toward the western part of Daegu through the city center. (3) As the results, the air pollutants were transported toward the western part of Daegu by the winds during nighttime.

Climate-related Changes in Fruit Growth of 'Fuyu' Persimmon during the Harvest Season (수확기 동안의 기상 변화에 따른 '부유' 감의 과실 생장)

  • Choi, Seong-Tae;Park, Doo-Sang;Son, Ji-Young;Park, Yeo-Ok;Hong, Kwang-Pyo;Cho, Kwang-Sik
    • Horticultural Science & Technology
    • /
    • v.31 no.1
    • /
    • pp.32-37
    • /
    • 2013
  • Relationships among climate changes, early frost, and fruit growth were studied during the final month to harvest of late-maturing 'Fuyu' persimmon (Diospyros kaki) to assess the changes in fruit characteristics during this critical period. The heavy frost on Nov. 16 defoliated more than 70% of the leaves, but with little damage on the fruits. However, all the leaves were defoliated by the heavy frost on Nov. 20, and all the fruits were cold-damaged by $-3.3^{\circ}C$ on Nov. 21. Fruit weight increased by 8-25 g per week from Oct. 25 (142 days after full bloom) to Nov. 15, reaching to 250 g, but it decreased by 3-4 g per week after the frost. Hunter a value of fruit skin gradually increased until the last harvest on Nov. 29 with a temporary halt in early Nov. when temperature was high, whereas fruit firmness rapidly decreased after the frost on Nov. 21. Fruit soluble solids were $15.7-16.1^{\circ}Brix$ for the final month. When some branches were covered with non-woven fabrics to avoid direct contact with frost, the fruits on the branches were not visually damaged by the low temperature although 40-60% of their leaves were defoliated on Nov. 16. However, low temperature on Nov. 20 and 21 defoliated all the leaves, causing cold damage on the fruits. There was a highly significant correlation between the fruit diameter and its weight ($R^2$ = 0.73-0.91). So, the regression equations could be used to estimate weight from diameter of the fruits sampled from the branches with the non-woven fabrics. The calculated fruit weight reached to a maximum of 240 g on Nov. 15. Daily increases in fruit weight were 1.1-2.5 g from Oct. 25 to 31, 1.9-3.5 g from Oct. 31 to Nov. 7, and 1.4-1.6 g from Nov. 7 to 12. However, fruit weight decreased by 0.3-1 g per day after the cold damage on Nov. 21. The results indicate that the most appropriate harvest time could be dependent on relationship of fruit growth to climate.

A Review of Recent Climate Trends and Causes over the Korean Peninsula (한반도 기후변화의 추세와 원인 고찰)

  • An, Soon-Il;Ha, Kyung-Ja;Seo, Kyong-Hwan;Yeh, Sang-Wook;Min, Seung-Ki;Ho, Chang-Hoi
    • Journal of Climate Change Research
    • /
    • v.2 no.4
    • /
    • pp.237-251
    • /
    • 2011
  • This study presents a review on the recent climate change over the Korean peninsula, which has experienced a significant change due to the human-induced global warming more strongly than other regions. The recent measurement of carbon dioxide concentrations over the Korean peninsula shows a faster rise than the global average, and the increasing trend in surface temperature over this region is much larger than the global mean trend. Recent observational studies reporting the weakened cold extremes and intensified warm extremes over the region support consistently the increase of mean temperature. Surface vegetation greenness in spring has also progressed relatively more quickly. Summer precipitation over the Korean peninsula has increased by about 15% since 1990 compared to the previous period. This was mainly due to an increase in August. On the other hand, a slight decrease in the precipitation (about 5%) during Changma period (rainy season of the East Asian summer monsoon), was observed. The heavy rainfall amounts exhibit an increasing trend particularly since the late 1970s, and a consecutive dry-day has also increased primarily over the southern area. This indicates that the duration of precipitation events has shortened, while their intensity became stronger. During the past decades, there have been more stronger typhoons affecting the Korean peninsula with landing more preferentially over the southeastern area. Meanwhile, the urbanization effect is likely to contribute to the rapid warming, explaining about 28% of total temperature increase during the past 55 years. The impact of El Nino on seasonal climate over the Korean peninsula has been well established - winter [summer] temperatures was generally higher [lower] than normal, and summer rainfall tends to increase during El-Nino years. It is suggested that more frequent occurrence of the 'central-Pacific El-Nino' during recent decades may have induced warmer summer and fall over the Korean peninsula. In short, detection and attribution studies provided fundamental information that needed to construct more reliable projections of future climate changes, and therefore more comprehensive researches are required for better understanding of past climate variations.

Corrosivity of Atmospheres in the Korean Peninsula

  • Kim, Y.S.;Lim, H.K.;Kim, J.J.;Park, Y.S.
    • Corrosion Science and Technology
    • /
    • v.10 no.4
    • /
    • pp.109-117
    • /
    • 2011
  • The Korean Peninsula is located in the middle latitude of the northern hemisphere and has a clear 4-seasons and shows the typical temperate climate. Because of seasonal winds, it is cold and dry by a northwestern wind in the winter and it is hot and humid by a southeast wind in the summer. Also, temperature difference between the winter and the summer is large and it shows a rainy season from June to July but recently this regular trend may be greatly changed by an unusual weather phenomena. Since the Peninsula is east high west low type, the climate is complicated too. Because these geographical and climate characteristics can affect the properties of corrosion of metals and alloys, a systematic research on atmospheric corrosion in the Peninsula is required to understand and control the corrosion behavior of the industrial facilities. This paper analyzed the atmospheric corrosion factors for several environments in the Korean Peninsula and categorized the corrosivity of atmospheric corrosion of metals and alloys on the base of the related ISO standards. Annual pH values of rain showed the range of 4.5~5.5 in Korean Peninsula from 1999 to 2009 and coastal area showed relatively the low pH's rain. Annual $SO_2$ concentrations is reduced with time and its concentrations of every major cities were below the air quality standard, but $NO_2$concentration revealed a steady state and its concentration of Seoul has been over air quality standard. In 2007, $SO_2$classes of each sites were in $P_0{\sim}P_1$, and chloride classes were in $S_0{\sim}S_1$, and TOW classes were in ${\tau}_3{\sim}{\tau}_4$.That is, $SO_2$ and chloride classes were low but TOW class was high in Korean Peninsula. On the base of these environmental classes, corrosivity of carbon steel, zinc, copper, aluminium can be calculated that carbon steel was in C2-C3 classes and it was classified as low-medium, and zinc, copper, and aluminium showed C3 class and it was classified as medium.

Spring Phonology of a Grapevine Cultivar under the Changing Climate in Korea during 1921-2000 (겨울기온 상승에 따른 낙엽과수의 휴면생태 변화)

  • Jung Jea-Eun;Seo Hee-Cheol;Chung U-Ran;Yun Jin-I.
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.8 no.2
    • /
    • pp.116-124
    • /
    • 2006
  • Remarkable winter season warming has been observed in East Asian countries during the last century. Accordingly, significant effects on dormancy and the resulting budburst of deciduous trees are expected. However phenological observations are rare and insufficient compared with the long-time climate records in the same region. A chill-day accumulation, which can be estimated from daily maximum and minimum temperature, is expected to make a reasonable proxy for dormancy depth of temperate zone fruit trees. To simulate dormancy depth during 1921-2004, a chill-day model parameterized for 'Campbell Early' grapevine, which is the major cultivar grown virtually anywhere in South Korea, was applied to daily temperature data at 8 locations in South Korea. The calculations showed that the chilling requirement for breaking endo-dormancy of this grapevine cultivar can be satisfied by mid-January to late February in South Korea, and the date was delayed going either northward or southward from the 'Daegu-Jeonju' line crossing the middle of South Korea in the east-west direction. Maximum length of the cold tolerant period (the number of days between endo-dormancy release and forced dormancy release) showed the same spatial pattern. When we divide the 83 years into 3 periods (I: 1921-1950, II: 1951-1980, and III: 1981-2004) and get the average of each period, dormancy release date of period III was accelerated by as much as 15 days compared with that of period I at all locations except Jeju (located in the southernmost island with subtropical climate) where an average15-day delay was predicted. The cold- tolerant period was also shortened at 6 out of 8 locations. As a result, budburst of 'Campbell Early' in spring was accelerated by 6 to 10 days at most locations, while inter-annual variation in budburst dates was increased at all locations. The earlier budburst after the 1970s was due to (1) warming in winter resulting in earlier dormancy release (Incheon, Mokpo, Gangneung, and Jeonju), (2) warming in early spring accelerating regrowth after breaking dormancy (Busan and Jeju), and (3) both of them (Seoul and Daegu).

Analysis of Heating Load of a Naturally Ventilated Broiler House using BES Simulation (BES 기법을 이용한 자연환기식 육계사의 난방에너지 분석)

  • Hong, S.W.;Lee, I.B.;Hong, H.K.;Seo, I.H.;Hwang, H.S.;Bitog, J.P.;Yoo, J.I.;Kwon, K.S.;Ha, T.H.;Kim, K.S.
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.50 no.1
    • /
    • pp.39-47
    • /
    • 2008
  • Most of the broiler houses in Korea have experienced problems on controlling the environmental conditions such as suitability, stability and uniformity of rearing condition inside the broiler house. It is very critical which if not properly controlled, would cause serious stress on the chickens. It is therefore urgent to develop optimum designs of naturally ventilated broiler house which is appropriate to the four seasons of Korea. Field experiment for this matter is very difficult to conduct due to the unpredictable and uncontrollable weather condition. In this study, the heating load of a naturally ventilated broiler house was calculated using TRANSYS 15 BES program while internal climate and thermal condition were computed using Fluent 6.2. The computed resulted of the conventional ventilation system (A) and upgraded ventilation system (B) (Seo et al, 2007) were compared with each other for cold season. The results of the Building Energy Simulation(BES) indicated that the system B, the upgraded ventilation system made 8% lower total heating load and 47% lower at only the broiler zone compared to the conventional broiler house. Considering the entire broiler house, the existence of middle ceiling made the heating energy 11% lower required than without middle ceiling. Accordingly, the system B with middle ceiling was found to save heating energy by 20% in average. This study showed that the BES program can be a very powerful to effectively compute the energy loads of agricultural building while the energy load is very close related to ventilation efficiency.

A Field Survey on the Standard Establishment of Thermal Indoor Climate - with the effect of thermal environmental factors, and clothing to the thermal sensation - (표준실내기후 설정에 관한 기초조사연구 -열환경요소와 착의량이 온냉감반응에 미치는 영향-)

  • Choi Hei Sun
    • The Magazine of the Society of Air-Conditioning and Refrigerating Engineers of Korea
    • /
    • v.16 no.6
    • /
    • pp.590-605
    • /
    • 1987
  • The purpose of this study was to investigate thermal environmental factors, thermal clothing properties, and thermal sensation of the office workers in four selected office buildings in Seoul, and to determine the effect of thermal environmental factors and clothing insulation to the thermal sensation of the subjects. The subjects selected from each office were 5 males and 5 females at a time. Thermal environmental factors(DBT, GT, RH, MRT, $ET^{\ast}$) and clothing variables such as clothing weight per body surface $area(g/m^2)$ and estimated clothing insulation values(clo) were significantly different among each seasons(p<0,001). Means of $ET^{\ast}$ and estimated clothing insulation values of each season were as follows; Winter; $20.84^{\circ}C$ $ET^{\ast}$ with 0.72 clo for male and 0.79 clo for female Spring and fall; $23.65^{\circ}C$ $ET^{\ast}$ with 0.59 clo for male and 0.68 clo for female Summer; $26.00^{\circ}C$ $ET^{\ast}$ with 0.47 clo for male and 0.53 clo for female. In comparison these data with ASHRAE Standard, the subjects were predicted to feel comfort-able in spring and fall, and slightly hot in summer and slightly cold in winter because of high and low clo respectively. But the result of this survey showed more than $80\%$ of the occupants were thermally comfortable at a given environmental temperature and clo.

  • PDF

Effect of Different Wind-break Net on Reducing Damage of Cold Sea Wind (수도 풍해경감을 위한 방풍강 강목의 효과)

  • 이승필;김상경;이광석;최대웅;김칠용
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.35 no.4
    • /
    • pp.352-361
    • /
    • 1990
  • The reducing effect of wind injury was investigated using several wind-break nets in Youngdeok province where cold-wind damage is often occurred during rice growing season. The white-head damage of rice have been often occurred by typhoon during the period between August 15 to September 10 in the cold wind area of the eastern coastal during the last 11 years (1979-1989). This may suggest that the critical period for heading will be by August 15 in the regions. High evaporation coefficient, more than 250 due to typhoon passage over the regions resulted high injury of white head. Generally, the wind injury have been caused by warm and dry westerlies through Fohn apperance in Taebaeg mountains and by cool-humid wind which blows from coast to inland. The frequency of occurrence of the two types of typhoons were 25, 20%, respectively during rice cultivation. The instalation of wind-break net significantly reduced the wind blowing speed, depending on the net mesher with the higher effect in dence net. The distances between the net and cropping area also affect the wind speed: 23% reduction at 1m distance. 34% at 10m and 28% at 20m, respectively. The reducing effect was also observed even at 10 times height of the wind-break net. The instalation of wind-break net gave several effects on climate factor, showing that temperature increased by 0.8$^{\circ}C$(maximum), 0.7$^{\circ}C$(minimum), 0.6$^{\circ}C$(average) : water temperatures increased by 0.5$^{\circ}C$(maximum), 0.6$^{\circ}C$(minimum), 0.5$^{\circ}C$(average) : soil temperature increased 0.4$^{\circ}C$. The earlier heading and increasing growth rate, use of light, culm length, panicle number per hill, spikelet number per panicle, fertility and 1,000 grain weight were observed in the fields with the wind-break nets resulting in 10-15% increase in rice yield using 0.5${\times}$0.5cm nets. The increasing seedlings per hill gave higher grain yield by 13% in the cold wind damage regions of eastern coastals. and the wind-break was more significant in the field without the wind-break net. Wind injury of rice plant in the cold wind regions of eastern coastals in korea could be reduced by selection of tolerant varieties to wind injury, adjustment of transplanting time, and establishment of wind-break nets.

  • PDF

Cultural Practices for Reducing Cold Wind Damage of Rice Plant in Eastern Coastal Area of Korea (동해안지대 도작의 냉조풍피해와 피해경감대책)

  • 이승필;김칠용
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.36 no.5
    • /
    • pp.407-428
    • /
    • 1991
  • The eastern coastal area having variability of climate is located within Taebaek mountain range and the east coast of Korea. It is therefore ease to cause the wind damages in paddy field during rice growing season. The wind damages to rice plant in this area were mainly caused by the Fohn wind (dry and hot wind) blowing over the Taebaek mountain range and the cold humid wind from the coast. The dry wind cause such as the white head, broken leaves, cut-leaves, dried leaves, shattering of grain, glume discolouration and lodging, On the other hand the cold humid wind derived from Ootsuku air mass in summer cause such symptom as the poor rice growth, degeneration of rachis brenches and poor ripening. To minimize the wind damages and utilize as a preparatory data for wind injury of rice in future, several experiments such as the selection of wind resistant variety to wind damage, determination of optimum transplanting date, improvement of fertilizer application methods, improvement of soils and effect of wind break net were carried out for 8 years from 1982 to 1989 in the eastern coastal area. The results obtained are summarized as follows. 1. According to available statisical data from Korean meteorological services (1954-1989) it is apperent that cold humid winds frequently cause damage to rice fields from August 10th to September 10th, it is therefore advisable to plan rice cultivation in such a way that the heading date should not be later than August 10th. 2. During the rice production season, two winds cause severe damage to the rice fields in eastern coastal area of Korea. One is the Fohn winds blowing over the Taebaek mountain range and the other is the cold humid wind form the coast. The frequency of occurrence of each wind was 25%. 3. To avoid damage caused by typhoon winds three different varieties of rice were planted at various areas. 4. In the eastern coastal area of Korea, the optimum ripening temperature for rice was about 22.2$^{\circ}C$ and the optimum heading date wad August 10th. The optimum transplanting time for the earily maturity variety was June 10th., medium maturity variety was May 20th and that of late maturity was May 10th by means of growing days degree (GDD) from transplanting date to heading date. 5.38% of this coastal area is sandy loamy soil while 28% is high humus soil. These soil types are very poor for rice cultivation. In this coastal area, the water table is high, the drainage is poor and the water temperature is low. The low water temperature makes it difficult for urea to dissolve, as a result rice growth was delayed, and the rice plant became sterile. But over application of urea resulted in blast disease in rice plants. It is therefore advise that Ammonium sulphate is used in this area instead of urea. 6. The low temperature of the soil inhibits activities of microorganism for phosphorus utilization so the rice plant could not easily absorb the phosphorus in the soil. Therefore phosphorus should be applied in splits from transplanting to panicle initiation rather than based application. 7. Wind damage was severe in the sandy loamy soil as compared to clay soils. With the application of silicate. compost and soil from mointain area. the sand loamy soil was improved for rice grain colour and ripening. 8. The use of wind break nets created a mocro-climate such as increased air. soil and water temperature as well as the reduction of wind velocity by 30%. This hastened rice growth, reduced white head and glume discolouration. improved rice quality and increased yield. 9. Two meter high wind break net was used around the rice experimental fields and the top of it. The material was polyethylene sheets. The optimum spacing was 0.5Cm x 0.5Cm. and that of setting up the wind break net was before panicle initiation. With this set up, the field was avoided off th cold humid wind and the Fohn. The yield in the treatment was 20% higher than the control. 10. After typhoon, paddy field was irrigated deeply and water was sprayed to reduce white head, glume discolouration, so rice yield was increased because of increasing ripening ratio and 1, 000 grain weight.

  • PDF