• Title/Summary/Keyword: Cold Reduction

Search Result 590, Processing Time 0.027 seconds

Simulating Nuetron Irradiation Effect on Cyclic Deformation and Failure Behaviors using Cold-worked TP304 Stainless Steel Base and Weld Metals (냉간가공된 TP304 스테인리스강 모재와 용접재를 이용한 반복 변형 및 손상 거동에 미치는 중성자조사 영향 모사)

  • Kim, Sang Eun;Kim, Jin Weon
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.16 no.2
    • /
    • pp.58-67
    • /
    • 2020
  • This study presents cyclic stress-strain and tensile test results at room temperature (RT) and 316℃ using cold-worked TP304 stainless steel base and weld metals. By comparing the cyclic hardening/softening behavior and failure cycle of cold-worked materials with those of irradiated austenitic stainless steels, the feasibility of simulating the irradiation effect on cyclic deformation and failure behaviors of TP304 stainless steel base and weld metals was investigated. It was found that, in the absence of strain-induced martensite trasformation, cold-working could properly simulate the change in cyclic hardening/softening behavior of TP304 stainless steel base and weld metals due to neutron irradiation. It was also recognized that cold-working could adequately simulate the reduction in failure cycles of TP304 stainless steel base and weld metals due to neutron irradition in the low-cycle fatigue region.

Effectiveness Validation on Cold Multi-Stage Forging of Aluminum Inner Tie Rod Socket (알루미늄 이너 타이로드 소켓의 냉간다단단조 유효성 검증)

  • Park, Jae-Wook;Choi, Jong-Won;Jeong, Enn-Eun;Yoon, Il-Chae;Kang, Myungchang
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.21 no.1
    • /
    • pp.49-55
    • /
    • 2022
  • Recently, the automobile industry has continued to demand lighter materials owing to international environmental regulations and increased convenience. To address this demand, aluminum parts have increased in popularity and are mainly developed and produced through hot forging and cold pressing. However, because this method has low yield and low production efficiency, a new manufacturing method is desirable. In this study, the water capacity efficiency of an aluminum inner tie rod socket was investigated using cold forging that provided a high yield and excellent production efficiency. Mechanical properties were derived through tensile testing of 6110A aluminum materials, and critical fracture factor and process analysis based on experimental data were carried out. The optimized process was applied as a prototype using cold multi-stage forging, and based on the derived results, the formability, productivity, and material efficiency of aluminum inner tie rod socket parts using this cold forging process was verified.

Multi-stage Cold Forging Process Design and Backward Extrusion Characteristics Evaluation of Serration Gear for Electronic Parking Brake (전자식 파킹 브레이크용 세레이션 기어의 냉간다단단조 공정 설계 및 후방 압출특성에 관한 평가)

  • Seo, Ju-Han;Choi, Jong-Won;Jung, Eu-Enn;Kang, Myungchang
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.21 no.2
    • /
    • pp.130-136
    • /
    • 2022
  • Reducing production costs through net-shaped cold forging is an important aspect in the automobile industry. In this study, we intend to produce a net-shaped electronic parking brake (EPB) serration gear for automobiles, using multi-stage cold forging. These serrations are then assembled to the reduction gear of an EPB actuator. The forging process of the serrations and the cold forging design were verified through finite element analysis (FEA) in order to evaluate metal flow. The forging machine was selected by checking the load using FEA. Based on the FEA results, molds were designed, and parts were made using multi-stage cold forging to produce a net-shaped serration gear.

Chloride Diffusion Coefficient Evaluation in 1 Year-Cured OPC Concrete under Loading Conditions and Cold Joint (하중조건과 콜드조인트를 고려한 1년 양생된 OPC 콘크리트의 염화물 확산계수 평가)

  • Oh, Kyeong-Seok;Kwon, Seung-Jun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.21 no.5
    • /
    • pp.21-29
    • /
    • 2017
  • Cold joint caused by construction delay is vulnerable to shear stress and it allows more rapid chloride penetration and diffusion. In the paper, investigation of chloride diffusion coefficient is performed for 1-year cured concrete considering compressive and tensile loading level and cold joint. The results are compared with the previous results in 91-day cured concrete. In the 1-year cured concrete without loading, 10.7% and 10.5% of diffusion reduction are evaluated for those in 91-day cured concrete, respectively. The reduction ratios are almost similar however the result in cold joint concrete shows much higher values. The results in 1-year cured concrete under 30% and 60% of compressive loading show reduction of chloride diffusion by 10.9% and 5.8% compared with 91-day cured results, which is caused by steady hydration of cement particles, so called, time effect. In the case of tensile loading, the differences in results are not significant regardless of time effect and cold joint since micro cracks which is weak point of concrete is much dominant despite of long term curing.

Improvement of shear deformation by controlling reduction per a rolling pass during asymmetrical cold rolling in AA 5052 (AA5052 판재의 비대칭 냉간압연 시 압연 패스당 압하율 제어에 의한 전단 변형 향상)

  • Kang, H.G.;Han, Y.H.;Huh, M.Y.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2007.05a
    • /
    • pp.226-228
    • /
    • 2007
  • During asymmetrical cold rolling in AA 5052 sheet a reduction per a rolling pass was varied to investigate the effect of the ratio of the contact length between the roll and sample ($l_c$) to the sheet thickness (d) on the formation of shear textures. In order to intensify the shear deformation during asymmetrical rolling, AA 5052 sheet was asymmetrically cold rolled without lubrication by using different roll velocities of upper and lower rolls. Asymmetrical rolling with $l_c$/d=1.8 led to the formation of texture gradients throughout the sheet thickness in which the outer thickness layers depicted shear textures and the center thickness layers displayed a rolling texture. Asymmetrical rolling with $l_c$/d=3.1 gave rise to the formation of shear textures in the whole through-thickness layer. The strain states associated with asymmetrical rolling were investigated by the finite element method (FEM) simulation. FEM results indicated that the evolution of deformation texture in a thickness layer is strongly governed by integrated values of strain rates and along the streamline in the roll gap.

  • PDF

SI Engine Hydrocarbon Emissions Reduction with Secondary Air Injection and Coolant Control (2차 공기분사 및 냉각수제어에 의한 SI 엔진의 탄화수소 배기저감)

  • 박기수;조영진;박심수
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.8 no.4
    • /
    • pp.51-58
    • /
    • 2000
  • It is well known that the majority of the emissions measured from vehicle exhaust in the US Federal Test Procedure(FTP-75) are emitted during the first 60 seconds. This paper describes an experimental study on SI engine emissions reduction after cold start with interval secondary air injection and coolant control. Secondary air injection after cold start to reduce exhaust emissions causes an exothermic reaction at the exhaust port and gives sufficient air to the catalyst. For that reason engine-out emissions oxidized in the exhaust port and the rapid heating of a catalytic converter after cold start with CSAI and ISAI are estimated. The influence of the coolant temperature on SI engine emissions has been estimated. In the present studycoolant control of the cylinder head tempeature is used to investigate the effect of coolant temperature on SI engine emissions. The results show that engine-out hydrocarbon and carbon monoxide emissions are considerably reduced with interval secondary air injection and coolant control.

  • PDF

Effects of Mn, Co Additions and Microporosities on the Thermal Expansion Coefficient of powder Rolled Fe-36Ni Invar Strip (분말압연에 의해 제조된 인바(Fe-36Ni)판재의 열팽창 계수에 미치는 미세 기공 및 합금 원소 첨가 효과)

  • 이동원
    • Journal of Powder Materials
    • /
    • v.2 no.3
    • /
    • pp.223-230
    • /
    • 1995
  • The effects of Mn and Co additions up to 0.6 and 2.0 wt% respectively and the amount of cold-rolled reduction on the thermal expansion coefficient (TEC) of powder rolled Fe-Ni Invar strips were investigated. The compacted strips were sintered, homogenized and cold-rolled to the final thickness of 0.8 mm, 0.65 mm and 0.4 mm. All the strips reached full density except the case of 0.8 mm sample which has a very few porosities. The interstitials which are well known to increase TEC were minimized to the level of 10 rpm C,5 and N,0 by the processing. TEC was found to decrease by increasing the cold reduction. The Mn content had little effect on the TEC. But in Fe-Ni-Co system, TEC decreased with Co content up to 0.4 wt% and then increased, yielding the minimum value of $0.2 {\times} 10-6/^{\circ}C$ at 0.4 wt% Co. This value is much lower than that of commercial Invar product. Such effect of Co is considered to be related with the maxiumum spontaneous- magnetostriction effect.

  • PDF

An Experimental Study on NOX Reduction in a Diesel Engine with Cold EGR (Cold EGR 장착 디젤엔진에서의 NOx 저감에 관한 실험적 연구)

  • Chauhana, Bhupendra Singh;Kumar, Naveen;Jun, Yong-Du
    • Proceedings of the KAIS Fall Conference
    • /
    • 2010.05b
    • /
    • pp.769-772
    • /
    • 2010
  • The objective of the current research work is to investigate the usage of biodiesel combined with the use of EGR in order to reduce the emission of all regulated pollutants from diesel engines. A single cylinder, air cooled, constant speed direct injection diesel engine was used for the experimental work and a cold EGR system was developed and fitted to the engine. Concentrations of HCs, NOx, and CO from the exhaust gas along with the smoke opacity were measured. Engine performance parameters such as the brake thermal efficiency (BTE) and the brake specific energy consumption (BSEC) were also calculated from the measured data. The results from the present investigation suggest that 25-30% EGR rate could give excellent NOx reduction without any significance penalty on smoke opacity or BSEC under the engine load of up to 40%. Under the full load condition, 15% EGR rate was found to be an option while higher EGR rate resulted in inferior performance and heavy smoke.

  • PDF

Development of LPI Vehicle Fuel Filter Housing (LPI 차량용 연료필터하우징 개발)

  • Hong, Byeong-Hoon;Park, Sung-Young
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.2
    • /
    • pp.653-659
    • /
    • 2014
  • Computer simulation has been performed to optimize cold forging process of automotive LPI fuel filter housing. A mold and the test product have been manufactured considering the strain and load distribution during the cold forging process. Also, fuel flow simulation has been performed to analyze flow characteristics of existing model and new model. Simulation result shows that two models have equivalent pressure drop. Compared with the mass of existing product, raw material reduction of 16 g and 30.5 g has been achieved from the upper and lower housing, respectively. Total mass reduction of the new housing was 46.5 g. Leak test and internal pressure test have been performed to verify the safety standard and test results were satisfactory.

A Verification Study on the Temperature reduction Effect of Water Mist Injection

  • Kim, Jeong-Ho;Lee, Myung-Hun;Yoon, Yong-Han
    • KIEAE Journal
    • /
    • v.15 no.3
    • /
    • pp.5-14
    • /
    • 2015
  • Purpose: Recently, according to climate changes, human health is exposed to danger over the world and they influence all fields of human society. Due to these climate changes, humans can be exposed to more frequent and extreme scorching heat and cold wave than the present. As precautions against these urban higher temperature and dryness, diverse methods are being sought. Among them, as measures to form cold islands, the evaporative cooling effect realistic to social and economic conditions was examined. Method: This study was conducted to analyze effects of temperature reduction and cooling according to injection quantity of minute water particles by using a blast sprayer as one of alternatives of alleviation of urban climate changes in outside space in summer. For this, through temperature difference in accordance with the injection quantity per hour of a day, a time zone representing the value of the highest temperature change was analyzed. Also, by analyzing temperature difference according to the injection quantity per daytime insolation, relation of amounts of insolation and evaporation was investigated. Temperature difference in accordance with distances at the highest temperature with the highest value in temperature changes was analyzed. Result: At the study result, about temperature, as injection quantity increase, temperature reduction was significant statistically at the highest temperature with the most insolation. A factor with the highest influence was judged to be the increase of the injection quantity. According to the injection quantity, it was predicted that $3.1^{\circ}C$ temperature reduction of a daily average in case of 0.16L/min, $3.5^{\circ}C$ temperature reduction of a daily average in case of 0.32L/min, and $4.4^{\circ}C$ temperature reduction of a daily average in case of 0.48L/min.