• Title/Summary/Keyword: Cold Crucible

Search Result 54, Processing Time 0.031 seconds

Cold Crucible Electromagnetic Casting of Silicon (Cold crucible을 이용한 실리콘의 전자기주조)

  • Shin, Je-Sik;Lee, Sang-Mok;Moon, Byung-Moon
    • Journal of Korea Foundry Society
    • /
    • v.25 no.3
    • /
    • pp.115-122
    • /
    • 2005
  • In the present study, an EMC (Electromagnetic Casting) process, using a segmented Cu cold crucible under a high frequency alternating magnetic field of 20 kHz, was practiced for the fabrication of poly-crystalline Si ingot of 50 mm diameter. The effects of Joule heating and electromagnetic pressure in molten Si were systematically investigated with various processing parameters such as electric current and crucible configuration. A preliminary experimental work was initiated with the pure Al system for the establishment of a stabilized non-contact working condition, and further adapted to the semiconductor-off-grade Si system. A commercialized software such as Opera-3D was utilized in order to simulate electromagnetic pressure and Joule heating. In order to evaluate the meniscus shape of the molten melts, shape parameter was used throughout the research. A segmented graphite crucible, which was attached at the upper part of the cold crucible, was introduced to enhance significantly the heating efficiency of Si melt keeping non-contact condition during continuous melting and casting processes.

Electromagnetic analysis for the design of levitation melting cold crucible (부양용해용 cold crucible 설계를 위한 전자기장 해석)

  • Song, Myung-Kon;Koh, Taek-Beom;Lee, Sang-Jin
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2005.05a
    • /
    • pp.402-405
    • /
    • 2005
  • 부양용해 기술은 티타늄등 용해 및 주조에 어려움이 있는 기능성 금속의 용해 시 소재의 오염이나 고가의 도가니 없이 용해할 수 있는 기술로써 기계 부품 경량화 및 고강도를 위한 기술 및 신수요 창출을 위한 기반을 제공할 수 있다. 본 논문은 실기용 부양용해 cold crucible의 설계 및 제작에 앞서 실기 제작할 cold crucible에 대한 기초 자료를 바탕으로 컴퓨터 시뮬레이션을 위한 부양체를 포함한 3차원 전자기장 해석 model을 구축하여, 실제 cold crucible 설계 제작 시 다양한 형태로 활용될 수 있는 기본자료를 확보하는데 그 목적이 있다.

  • PDF

Introducing the Electromagnetic analysis model in the design of levitation melting cold crucible (부양용해용 cold crucible 설계를 위한 전자기장 해석 모델 개발)

  • Song, Myung-Kon;Lee, Sang-Jin;Kim, Ho-Young;Park, Joon-Pyo;Kim, Goo-Haw;Jeong, Hee-Tae
    • Proceedings of the KIEE Conference
    • /
    • 2003.07b
    • /
    • pp.885-887
    • /
    • 2003
  • 부양용해 기술은 티타늄등 용해 및 주조에 어려움이 있는 기능성 금속의 용해 시 소재의 오염이나 고가의 도가니 없이 용해할 수 있는 기술로써 기계 부품 경량화 및 고강도를 위한 기술 및 신수요 창출을 위한 기반을 제공할 수 있다. 본 논문은 실기용 부양용해 cold crucible의 설계 및 제작에 앞서 모사 cold crucible에 대한 기초 자료를 바탕으로 컴퓨터 시뮬레이션을 위한 3차원 전자기장 해석 model을 구축하여, 모사 모델과의 측정값과 전자장 해석결과를 비교하여, 실제 cold crucible 설계 제작시 다양한 형태로 활용될 수 있는 기본자료를 확보하는데 그 목적이 있다.

  • PDF

Numerical Analysis on the Flow Pattern in the Melt of Cold Model for the Czochralski system

  • Kim, Min-Cheol;Lee, Sang-Ho;Yi, Kyung-Woo
    • Proceedings of the Korea Association of Crystal Growth Conference
    • /
    • 1998.09a
    • /
    • pp.113-116
    • /
    • 1998
  • A numerical study was performed on the fluid flow in the melt of the cold model for Czochralski growth system. The fluid flow in the melt of Woods metal with crucible diameter of 20cm was calculated using a three dimensional finite difference method. Since the crucible size is large, fully turbulent model as well as laminar model was used in the calculation. The effects of crucible rotation rate, crystal rotation rate and wall temperature difference on the velocity and temperature distribution were also investigated. For the purpose of verifying the results of calculation, a cold model experiment using Woods metal was also conducted and the velocity distribution in the melt of the model was measured.

  • PDF

The Study on the Power Consumption for Glass Melting by Cold Crucible Melter (CCM용융에 대한 유리용융 조건 연구)

  • Jin, Hyun-Joo;Lee, Kyu-Ho;Jung, Young-Jae;Bae, So-Young;Kim, Tae-Ho;Jung, Young-Joon;Kim, Young-Seok;Lee, Kang-Taek;Ryu, Bong-Ki
    • Korean Journal of Metals and Materials
    • /
    • v.46 no.2
    • /
    • pp.65-68
    • /
    • 2008
  • Generally CCM (cold crucible melting) is not suitable for melting glass. However, in this study we described the quantitative relationship between the basic property of glass and power balance, the power absorption in the melt, the losses in the coil and the cold crucible, for melting glass in CCM. The dependence of power balance on the applied frequency and the electric conductivity has been found. Above 300 kHz, the glass (B) contained alkali ion which has the low resistance $3.0{\Omega}{\cdot}cm$ at $900^{\circ}C$ and $1.36{\Omega}{\cdot}cm$ at $1,100^{\circ}C$ was melted easily and 60% of the overall power was absorbed in the melt and 30% and 10% of the overall power was lost in the cold crucible and coil respectively. Under the same condition, the glass (A) contained non-alkali ion was not melted easily and 50% of the overall power was absorbed in the melt and 40% and 10% of the overall power was lost in the cold crucible and coil respectively. In conclusion, the small absorbed power of the overall power in melt prevented a successful melting as for glass A, and the successful melting depends on the relative size of the absorbed power in melt irrespective of the melting volume. Hence, as typical for direct induction heating method(CCM), the successful melting strongly depended on the chosen working frequency based on electric conductivity of glass, power balance and the control of the critical power which was absorbed in melt.

Melting and draining tests on glass waste form for the immobilization of Cs, Sr, and rare-earth nuclides using a cold-crucible induction melting system

  • Choi, Jung-Hoon;Lee, Byeonggwan;Lee, Ki-Rak;Kang, Hyun Woo;Eom, Hyeon Jin;Park, Hwan-Seo
    • Nuclear Engineering and Technology
    • /
    • v.54 no.4
    • /
    • pp.1206-1212
    • /
    • 2022
  • Cold-crucible induction melting (CCIM) technology has been intensively studied as an advanced vitrification process for the immobilization of highly radioactive waste. This technology uses high-frequency induction to melt a glass matrix and waste, while the outer surface of the crucible is water-cooled, resulting in the formation of a frozen glass layer (skull). In this study, for the fabrication of borosilicate glass waste form, CCIM operation test with 60 kg of glass per batch was conducted using surrogate wastes composed of Cs, Sr, and Nd as a representative of highly radioactive nuclides generated during spent nuclear fuel management. A 60 kg-scale glass waste form was successfully fabricated through melting and draining processes using a CCIM system, and its physicochemical properties were analyzed. In particular, to enhance the controllability and reliability of the draining process, an air-cooling drain control method that can control draining through air-cooling near drain holes was developed, and its validity for draining control was verified. The method can offer controllability on various draining processes, such as molten salt or molten metal draining processes, and can be applied to a process requiring high throughput draining.