Browse > Article

Cold Crucible Electromagnetic Casting of Silicon  

Shin, Je-Sik (New Materials Processing Team, Advanced Materials R&D Center, Korea Institute of Industrial Technology)
Lee, Sang-Mok (New Materials Processing Team, Advanced Materials R&D Center, Korea Institute of Industrial Technology)
Moon, Byung-Moon (New Materials Processing Team, Advanced Materials R&D Center, Korea Institute of Industrial Technology)
Publication Information
Journal of Korea Foundry Society / v.25, no.3, 2005 , pp. 115-122 More about this Journal
Abstract
In the present study, an EMC (Electromagnetic Casting) process, using a segmented Cu cold crucible under a high frequency alternating magnetic field of 20 kHz, was practiced for the fabrication of poly-crystalline Si ingot of 50 mm diameter. The effects of Joule heating and electromagnetic pressure in molten Si were systematically investigated with various processing parameters such as electric current and crucible configuration. A preliminary experimental work was initiated with the pure Al system for the establishment of a stabilized non-contact working condition, and further adapted to the semiconductor-off-grade Si system. A commercialized software such as Opera-3D was utilized in order to simulate electromagnetic pressure and Joule heating. In order to evaluate the meniscus shape of the molten melts, shape parameter was used throughout the research. A segmented graphite crucible, which was attached at the upper part of the cold crucible, was introduced to enhance significantly the heating efficiency of Si melt keeping non-contact condition during continuous melting and casting processes.
Keywords
Cold crucible; Poly-crystalline Si; Electromagnetic casting; Electromagnetic pressure; Joule heating; Segmented graphite crucible;
Citations & Related Records
연도 인용수 순위
  • Reference
1 S. Asai: Proceeding of the 6th International Iron and Steel Congress, (1990) 370-379
2 M. Schmela: Photon International, April (2004) 34-38
3 I. Perichaud, S. Martinuzzi and F. Durand: Solar Energy & Solar Cells, 72 (2002) 101-107   DOI   ScienceOn
4 S. H. Chung, Y. J. Oh, Y. W. Cho, K. W. Yi and J. D. Shim: J. Kor. Inst. Met. & Mater., 33 (1995) 1360-1367
5 European Patent No. 1-254-861-A1
6 J. P. Park H. T. Jeong, D. J. Sim and H. Y. Kim: J. Kor. Inst. Met. & Mater., 36 (1998) 1598-1604
7 V. M. Glazov, S. N. Chizhevskaya and N. N. Glagoleva: 'Liquid semiconductors', Plenum press, New York (1969) 55-83
8 K. Sassa and S. Asai: Journal of Japan Soc. for Heat Treatment, 30 (1990) 80-86
9 M. J. Ha: 'Effectt of Inductor Coil Shape on the Free Surface Shape of Molten Tin', KAIST M.S. thesis (1994)
10 M. Schmela: Photon International, March (2004) 46-53
11 Japanese Patent No. 2001-19594
12 F. Negrini, M. Fabbri, M. Zuccarini, E. Takeuchi and M. Tani: Energy Conversion & Management, 41 (2000) 1687-1701   DOI   ScienceOn
13 M. Furui, Y. Kojima and M. Matsuo: ISIJ, 33 (1993) 400-404   DOI   ScienceOn
14 D.R. Poirier and G.H. Geiger: 'Transport Phenomena in Materials Processing', TMS (1994)
15 W. F. Gale and T.C. Totemeier: 'Smithells Metals Reference Book 2', Elsevier Inc. (2004)
16 E. Ehret: Solar Energy Materials and Solar Cells, 53 (1998) 313-327   DOI   ScienceOn
17 C. R. Paul and S. A. Nasr: 'Introduction to Electromagnetic Field', McGraw-Hill Int. Edition (1987)
18 M. J. Ha and Z. H. Lee: J. Kor. Foundrymen's Soc., 14 (1994) 159-167
19 弟l回エネルギー使用合理化シリコン製造プロセス開發(事後評價)分科會 資料6-1