• Title/Summary/Keyword: Coil Spring Design

Search Result 80, Processing Time 0.023 seconds

A Study on the Contour Design of the Hinge Mechanism for a Mobile Phone Driven by Continuous Torques (연속적인 회전력으로 작동하는 휴대폰 힌지기구의 윤곽 설계에 관한 연구)

  • Park, Jong-keun;Lee, Soo Jun
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.9 no.3
    • /
    • pp.8-18
    • /
    • 2010
  • A total stroke of an opening or closing motion of a hinge mechanism for a folder-type mobile phone is composed of two portions. In the first portion, human fingers act a torque to open or close the folder. In this portion, the rotating folder compresses the coil spring installed in the hinge mechanism. In the last portion, this compressed coil spring generates a torque to rotate the folder. In this study, we have developed an algorithm to design a hinge mechanism to be operated by an arbitrary continuous torque in the first portion of the total stroke. Consequently, we can design hinge mechanisms that satisfy various demands of consumers. A pair of contours installed in the mechanism plays an important role. It transforms the folder's rotational motion into translation to compress the coil spring in the first portion; on the other hand, it transforms translational motion into the folder's rotation in the last portion. Using this algorithm we have designed the pair of the contour curves operated by an arbitrary continuous torque.

Dynamic Characteristic Improvement of the Plate Spring in a 2-axis Small Sized Actuator (2축 소형 구동기 판 스프링의 동특성 개선)

  • Park, Soon-Ok;Yoo, Jeong-Hoon;Park, No-Cheol
    • Transactions of the Society of Information Storage Systems
    • /
    • v.5 no.1
    • /
    • pp.14-18
    • /
    • 2009
  • This paper proposed an optimal plate spring design for the optical image stabilizer in mobile phones. The voice-coil motor (VCM) with plate spring is the smallest, lowest-cost solution for auto focus on the market today and it is also the simplest to implement. The VCM is selected in this paper for auto focusing. However, the design process is complex due to the many design variables coupled to each other and some constraints of each directional motion caused by the characteristics of plate spring. Because of the complex formulation of the design objective, a plate spring design is proposed through the design of experiments to find the optimal design satisfying design constraints.

  • PDF

The Shaking Table Test of Isolated Model EDG System (면진된 모형디젤발전기의 지진응답실험)

  • Kim, Min-Kyu;Choun, Young-Sun
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2006.03a
    • /
    • pp.479-486
    • /
    • 2006
  • This paper presents tile results of experimental studies of the isolated Model EDG Systems. For the experimental work, the scaled model of EDG system and the isolation systems were developed. The target EDG model is 16PC2-5V400 which was manufactured by the SEMT Pielstick corporation. The Coil Spring and Viscous Damper Systems were selected for the isolation system. The Coil Spring and Viscous Damper systems can reduce not only seismic forces but also the operating vibration. For the input seismic motions, the scenario earthquake and the artificial earthquakes which were developed as NRC design spectrum and Uniform hazard Spectrum(UHS) were selected. As a result, at least 20% of seismic forces were decreased as the isolation system.

  • PDF

Analysis of Stiffness for Frustum-shaped Coil Spring (원추형 코일스프링의 강성해석)

  • Kim, Jin-Hun;Lee, Soo-Jong;Kim, Jung-Ryul
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.32 no.2
    • /
    • pp.250-255
    • /
    • 2008
  • Springs are widely utilized in machine element. To find out stiffness of frustum-shaped coil spring, the space beam theory using the finite element method is adopted in this paper. In three dimensional space, a space frame element is a straight bar of uniform cross section which is capable of resisting axial forces, bending moments about two principal axes in the plane of its cross section and twisting moment about its centroidal axis. The corresponding displacement degrees of freedom are twelve. To find out load vector of coil spring subjected to distributed compression. principle of virtual work is adapted. And this theory was programming using MATLAB software. To compare FEM using MATLAB software was applied MSC. Nastran software. The geometry model for MSC. Patran was produced by 3-D design modeling software. Finite element model was produced by MSC. Patran. Finite element was applied tetra (CTETRA) having 10 node. The analysis results of the MATLAB and MSC. Nastran are fairly well agreed with those of various experiments. Using MATLAB program proposed in this paper and MSC. Nastran, spring constants and stresses can be predicted by input of few factors.

A Study on Adaptive Design of Mechanical Part for Smooth Lift (유연 승강기용 부품의 적용 설계에 관한 연구)

  • 최성대;정선환;조규열
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.1454-1457
    • /
    • 2003
  • This study was carried out to minimize the lifting force of a two hinge type stand mechanism. This unit is designed for the display devices in order to enhance the ergonomics for effective height adjustment and maintenance at any preferred position. The unit will be very useful for the mechanism fabricated with a coil spring and disc springs as a torque generator. The maximum and the minimum torque value should be calculated initially for the smooth lift. And the reasonable torque distribution is necessary to prevent any AUTO LIFT and AUTO Drooping at any position because the torque generated by coil spring is more sensitive than disc spring in tilting the position. Therefore, the analysis of the coil spring is requisite to issue the specific torque value depending on the distorted angle with securing reliability of a long time storage condition. After the theoretical torque value was calculated, the evaluation was carried out by making a proto-type sample, then distorted angle was updated by experiment. The result of this study can readily be applied to various units for the optimization of the smooth lift.

  • PDF

Strength Analysis for Compressed Coil Spring in the Gage - Adjustable Wheelset System (궤간 가변 윤축의 압축스프링에 대한 강도해석)

  • Kim, Chul-Su;Ahn, Seung-Ho;Chung, Kwang-Woo;Jang, Seung-Ho;Jang, Kook-Jin;Kim, Jung-Kyu
    • Proceedings of the KSR Conference
    • /
    • 2007.11a
    • /
    • pp.1012-1017
    • /
    • 2007
  • To reduce the cost and the time of transport in Eurasian railroad networks such as TKR(Trans-Korea Railway), TCR(Trans-China Railway) and TSR(Trans-Siberia Railway) owing to the problem of different track gauges (narrow/standard/broad gauge), it is important to develop the gauge - adjustable wheelset system to adapt easily to these gauges. Moreover, this system accomplishes periodically a conversion operation from the gauge variable segment between different gauge. Gauge adjustable compression coil spring during conversion process accomplishes repetitively a central role for operation mechanism between flange and locking part. Therefore, to assure the safety of the gauge-adjustment wheelset system, it is necessary to stress analysis of the optimized spring in the system. In this study, it was performed to optimal design of the spring for stress analysis by using the genetic algorithm.

  • PDF

An Optimization Design of the Insertion Part for Preventing the Screw Thread from Loosening (나사 풀림 방지를 위한 삽입 부품의 설계 최적화)

  • Park, Sangkun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.4
    • /
    • pp.2356-2363
    • /
    • 2015
  • This study deals the optimization design with the simulation based design of a coil spring inserted into the lock nut for preventing the screw thread from loosening at the bolted joint when the high-strength steel bolt with the property class of 10.9 is used and the screw torque of 640 to 800 (Nm) is applied. In this study, structural analysis of assembly composed of bolt, nut and coil spring is carried out to evaluate its safety factors on the basis of the equivalent stress with commercial finite element analysis software. And the design strategy to extract the design improvement from these simulation results is established. An iterative process performed with the proposed design strategy is also proposed for improving the performance of the existing design. At the proposed procedure, the feasible design parameters using response surface method are found, and then these parameters are verified to be optimal or not by comparing with the response values and the simulation results obtained from the feasible parameters.

Hinge Mechanism Design of Smooth-Lift-Unit for Flat Panel Display (평판디스플레이용 유연승강유니트의 힌지기구 설계)

  • Cheong, Seon-Hwan;Choi, Seong-Dae;Cho, Gyu-Yeol
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.6 no.3
    • /
    • pp.85-91
    • /
    • 2007
  • This study was carried out to minimize the lifting force of a two hinge type stand mechanism. This unit is designed for the display devices in order to enhance the ergonomics for effective height adjustment and maintenance at any preferred position. The unit will be very useful for the mechanism fabricated with a coil spring and disc springs as a torque generator. The maximum and the minimum torque value should be calculated initially for the smooth lift. And the reasonable torque distribution is necessary to prevent any auto lift and auto dropping at any position because the torque generated by coil spring is more sensitive than disc spring in tilting the position. Therefore, the analysis of the coil spring is requisite to issue the specific torque value depending on the distorted angle with securing reliability of a long time storage condition. After the theoretical torque value was calculated, the evaluation was carried out by making a proto-type sample, then distorted angle was updated by experiment. The result of this study can readily be applied to various units for the optimization of the smooth lift.

  • PDF

Design and Analysis of Vibration Driven Cylindric Electromagnetic Energy Harvester (진동 구동식 원통형 전자기 에너지 하베스터의 설계 및 해석)

  • Chung, Gwiy-Sang;Ryu, Kyeong-Il
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.23 no.11
    • /
    • pp.906-910
    • /
    • 2010
  • This paper describes the design and analysis of vibration driven cylindric electromagnetic energy harvester. The proposed harvester consists with spring, coil and rear earth magnet. The design utilizes an electromagnetic transducer and its operating principle is based on the relative movement of a magnet pole with respect to a coil. In order to optimal design and analysis, ANSYS FEA (Finite Elements Analysis) and Matlab model were used to predict the magnetic filed density with vibration and the generated maximum output power with load resistance. The system was designed for 6 Hz of natural frequency and spring constant was 39.48 N/m between 2 mm and 6 mm of displacement in moving magnet. When moving magnet of system was oscillated, each model was obtained that induced voltage in the coil was generated 2.275 Vpp, 2.334 Vpp and 2.384 Vpp, respectively. Then maximum output powers of system at load resistance ($1303{\Omega}$) were generated $124.2{\sim}132.2\;{\mu}W$ during magnets input displacement of 3 mm and 6 Hz periodic oscillation.

A Study on the Auto-moblie Gas Spring Structural Analysis Using of Bimetal (바이메탈을 이용한 자동차용 가스 스프링 구조해석에 관한 연구)

  • Park, Chul Woo;Kim, Ho Yoon
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.22 no.1
    • /
    • pp.131-137
    • /
    • 2013
  • Gas springs have been widely used in motor vehicles as well as in most areas of industry. Instead of coil springs, these gas springs are easily operated to extrusion process or compression process the doors because $N_2$ gas with high pressure and oil are charged in tube. Gas spring sustain the constant elasticity change rate in the high reaction force and long stroke, and they have compact design, appearance and an excellent assembling ability to be mounted easily with any applicatory products. By means of these aspects, gas springs have been widely used in stead of coil springs in the over all industries. In this study, using acommonly used program, ANSYS, the basic research about the heat transfer and equivalent stress change of bimetal.