Although multilayer perceptrons (MLPs) present several advantages against other pattern recognition methods, MLP-based speaker verification systems suffer from slow enrollment speed caused by many background speakers to achieve a low verification error. To solve this problem, the quantitative discriminative cohort speakers (QnDCS) method, by introducing the cohort speakers method into the systems, reduced the number of background speakers required to enroll speakers. Although the QnDCS achieved the goal to some extent, the improvement rate for the enrolling speed was still unsatisfactory. To improve the enrolling speed, this paper proposes the qualitative DCS (QlDCS) by introducing a qualitative criterion to select less background speakers. An experiment for both methods is conducted to use the speaker verification system based on MLPs and continuants, and speech database. The results of the experiment show that the proposed QlDCS method enrolls speakers in two times shorter time than the QnDCS does over the online error backpropagation(EBP) method.
While the multilayer perceptron(MLP) provides several advantages against the existing pattern recognition methods, it requires relatively long time in learning. This results in prolonging speaker enrollment time with a speaker verification system that uses the MLP as a classifier. This paper proposes a method that shortens the enrollment time through adopting the cohort speakers method used in the existing parametric systems and reducing the number of background speakers required to learn the MLP, and confirms the effect of the method by showing the result of an experiment that applies the method to a continuant and MLP-based speaker verification system.
Journal of the Institute of Electronics Engineers of Korea SP
/
v.39
no.3
/
pp.88-98
/
2002
The multilayer perceptron (MLP) has several advantages against other pattern recognition methods, and is expected to be used as the learning and recognizing speakers of speaker verification system. But because of the low learning speed of the error backpropagation (EBP) algorithm that is used for the MLP learning, the MLP learning requires considerable time. Because the speaker verification system must provide verification services just after a speaker's enrollment, it is required to solve the problem. So, this paper tries to make short of time required to enroll speakers with the MLP based speaker verification system, using the method of improving the EBP learning speed and the method of reducing background speakers which adopts the cohort speakers method from the existing speaker verification.
Generally a speaker verification system improves its system recognition ratio by regularizing log likelihood ratio, using a speaker model and its background speaker model that are required to be verified. The speaker-based cohort method is one of the methods that are widely used for selecting background speaker model. Recently, Gaussian-based cohort model has been suggested as a virtually synthesized cohort model, and unlike a speaker-based model, this is the method that chooses only the probability distributions close to basic speaker's probability distribution among the several neighboring speakers' probability distributions and thereby synthesizes a new virtual speaker model. It shows more excellent results than the existing speaker-based method. This study compared the existing speaker-based background speaker models and virtual speaker models and then constructed new virtual background speaker model groups which combined them in a certain ratio. For this, this study constructed a speaker verification system that uses GMM (Gaussin Mixture Model), and found that the suggested method of selecting virtual background speaker model shows more improved performance.
Speech has a good characteristics of which car drivers busy to concern with miscellaneous operation can make use in convenient handling and manipulating of devices. By utilizing this, this works proposes a speaker verification method for protecting cars from being stolen and identifying a person trying to access critical on-line services. In this, continuant phonemes recognition which uses language information of speech and MLP(mult-layer perceptron) which has some advantages against previous stochastic methods are adopted. The recognition method, though, involves huge computation amount for learning, so it is somewhat difficult to adopt this in speaker verification application in which speakers should enroll themselves at real time. To relieve this problem, this works presents a solution that introduces speaker cohort models from speaker verification score normalization technique established before, dividing background speakers into small cohorts in advance. As a result, this enables computation burden to be reduced through classifying the enrolling speaker into one of those cohorts and going through enrollment for only that cohort.
Proceedings of the Korean Information Science Society Conference
/
2004.04b
/
pp.571-573
/
2004
Speaker verification systems based on multilayer perceptrons (MLPs) have good prospects in reliability and flexibility required as a successful authentication system. However, the poor learning speed of the error backpropagation (EBP) which is representative learning method of MLPs is the major defect to be complemented to achieve real-time user enrollments. In this paper, we implement an MLP-based speaker verification system and apply the existing two methods of the omitting patterns in instant learning (OIL) and the discriminative cohort speakers (DCS) to approach real-time enrollment. An evaluation of the system on a Korean speech database demonstrates the feasibility of the system as a speaker verification system of high performance.
An on-farm trial was conducted in temperature-controlled lactation rooms at a commercial pig farm to investigate the efficacy of broadcasting sow suckling grunts from day 4 of lactation, on increasing piglet growth to weaning. In the Broadcast treatment, sows and litters were exposed to a 3-min broadcast from loud-speakers every 42 min. The Control treatment was not exposed to the broadcast. All sows and litters had similar husbandry and piglets were provided with creep feed on the floor twice daily. In each of the three replicates in time, the Broadcast and Control treatments were allocated to different lactation rooms at random and there were 12 sows and litters per treatment per replicate. A total of four identical lactation rooms were available for the trial, each containing 28 conventional sow and litter crates with piglet heater in the creep area. A non-trial room separated the two treatment rooms in each replicate to minimise the chance that the broadcast grunt stimulation was audible to the Control treatment litters. Five "normal and average-looking" piglets from the trial litters were weighed twice, 7 d apart. The cohort of five piglets was identified by ear-tags and formed the experimental unit for the statistical analysis. The average (${\pm}SD$) age of piglets at initial weighing was 7.7(${\pm}2.22$) days. For each litter, mean piglet live weight at day 14 of lactation was estimated by linear regression of the two weights recorded seven days apart, when on average, the Broadcast treatment had been exposed to the stimulation for 10 days. Piglets in the Broadcast treatment were heavier (p<0.01) at day 14 of lactation compared to Control treatment (4.24 and 3.92 kg, respectively) and tended to have a greater average daily weight gain over the 7-d period (245 and 228 g/day, respectively; p<0.08). The results suggest piglet growth was improved by about 8% in response to the regular, timed broadcast of sow suckling grunts in the lactation shed. The independent contributions of milk and creep feed to the improved growth remain to be determined.
Background: Studies of quality of life (QoL) of oncological patients is carried out using questionnaires approved in many international clinical studies. The European Organization for Research and Treatment of Cancer EORTC QLQ-C30 (Quality of Life Questionnary-Core 30) and its special brain cancer module EORTC QLQ-BN20 are widely used in the world neurooncologic practice. They are available in more than 80 official versions of 30 languages of the world. Previously we used the official versions in Russian, which often causes difficulty in understanding for native Kazakh language speakers, who comprise more than 60% of our respondents. This was the reason for creating a version of Kazakh language. Therefore, in 2014 for the first time the process of adaptation of questionnaires to the Kazakh language was initiated. Materials and Methods: The translation process of questionnaires to Kazakh language was held in accordance with the requirements of the European Organization for Research and Treatment of Cancer EORTC on QoL and consisted of the following stages: preparation - translation - pilot testing - approval. The official permission of authors and "Guideline on translation" was obtained which was developed by the working group of the EORTC on QoL. The pilot testing of EORTC QLQ-C30 and QLQ-BN20 questionnaires was conducted on the basis of the Department of Central Nervous System Pathology of the "National Centre for Neurosurgery" in patients with malignant tumors of the central nervous system. Results: The official versions of the EORTC QLQ-C30 and QLQ-BN20 questionnaires in Kazakh language were introduced and adapted in practical neurosurgical operations in Kazakhstan. Conclusions: The approved versions of the questionnaires in Kazakh language are now available for mainstream use on the official website EORTC.com. The versions of these questionnaires can be used in domestic cohort studies and clinical practice in the Republic of Kazakhstan. The use of these tools for assessing QoL will help professionals in the planning of individual treatment strategies and selection of the necessary therapy.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.