• Title/Summary/Keyword: Coherent light

Search Result 104, Processing Time 0.025 seconds

Research on the Influence of Polarization Aberration on Heterodyne Efficiency in Space Coherent Laser Communication System

  • Zheng, Yang;Piao, Yu
    • Current Optics and Photonics
    • /
    • v.6 no.1
    • /
    • pp.23-31
    • /
    • 2022
  • Heterodyne efficiency is an indicator to evaluate the performance of space coherent laser communication systems. It is affected by signal light and local oscillator (LO) light amplitude, phase and polarization state. In this paper, based on the common heterodyne efficiency, a heterodyne efficiency model that can reflect polarization aberration of optical system is proposed. The heterodyne efficiency is analyzed when the signal light and the LO light are linearly polarized or circularly polarized. For a coherent communication optical system, when the incident signal light is right-circularly polarized light and the incident LO light is 45° linear polarized light. Based on the three-dimensional ray tracing theory and the heterodyne efficiency proposed in this paper, the change of polarization states and the distribution of heterodyne efficiency of the signal light and LO light influenced by the optical system's polarization aberration are analyzed. Analysis shows that the heterodyne efficiency model proposed in this paper can be used to evaluate coherent communication systems and reflect the influence of optical system polarization aberration.

Quantum Interference Effects on Optical Amplification and the Index of Refraction in a Four-Level System

  • Zhang, Hui-Fang;Wu, Jin-Hui;Gao, Jin--Yue
    • Journal of the Optical Society of Korea
    • /
    • v.7 no.3
    • /
    • pp.174-179
    • /
    • 2003
  • We construct a four-level system where a metastable state is included in an $Er^{3+}$ Doped Yttrium aluminum garnet (YAG) crystal. Because of the action of the coherent field, the traditional light amplification with inversion can be exhibited with remarkable variation. As a result, we propose a method to achieve the gain equalization by atomic coherence. At the same time, we find that the high index of refraction accompanied by vanishing absorption can also be reached in this model. We also find that a higher index of refraction with zero absorption can be easily obtained when the coherent field is off resonance.

Recent advances in excimer-laser-based crystallization for active-matrix displays

  • Turk, Brandon A.;Herbst, Ludolf;Simon, Frank;Paetzel, Rainer
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2007.08a
    • /
    • pp.12-15
    • /
    • 2007
  • Excimer-laser-based crystallization is ideallysuited for forming crystalline Si films on glass substrates for use in active-matrix displays. In this paper, we will report on recent and significant technical advances in light sources and beam delivery systems targeted at enabling ultra-uniform mura-free low-temperature polycrystalline silicon active-matrix backplanes while simultaneously lowering production costs and increasing throughput.

  • PDF

Coherent Absorption Spectroscopy with Supercontinuum for Semiconductor Quantum Well Structure

  • Byeon, Ciare C.;Oh, Myoung-Kyu;Kang, Hoon-Soo;Ko, Do-Kyeong;Lee, Jong-Min;Kim, Jong-Su;Choi, Hyoung-Gyu;Jeong, Mun-Seok;Kee, Chul-Sik
    • Journal of the Optical Society of Korea
    • /
    • v.11 no.3
    • /
    • pp.138-141
    • /
    • 2007
  • We suggest that supercontinuum can be used for absorption spectroscopy to observe the exciton levels of a semiconductor nano-structure. Exciton absorption spectrum of a GaAs/AlGaAs quantum well was observed using supercontinuum generated by a microstructrured fiber pumped by a femtosecond (fs) pulsed laser. Significantly narrower peaks were observed in the absorption spectrum from 11 K up to room temperature than photoluminescence (PL) spectrum peaks. Because supercontinuum is coherent light and can readily provide high enough intensity, this method can provide a coherent ultra-broad band light source to identify exciton levels in semiconductors, and be applicable to coherent nonlinear spectroscopy such as electromagnetically induced transparency (EIT), lasing without inversion (LWI) and coherent photon control in semiconductor quantum structures.

Measurement of the group-delay dispersion of optical elements using white-light interferometry (백색광 간섭계를 이용한 광학소자의 군지연분산 측정)

  • Tayyab Imran;Hong, Kyung-Han;Yu, Tae-Jun;Nam, Chang-Hee
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 2003.07a
    • /
    • pp.248-249
    • /
    • 2003
  • The characterization of laser mirrors is important for obtaining proper performance of femtosecond lasers. Characteristics of laser mirrors are usually described in terms of their reflectivity at a certain wavelength. In femtosecond laser applications, however, the dispersion property of the mirror should be considered because the temporal shape of a femtosecond light pulse changes during the reflection at the mirrors. (omitted)

  • PDF

Ultrafast probes of coherent oscillations in Fe-based superconductors

  • Kim, K.W.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.19 no.1
    • /
    • pp.1-4
    • /
    • 2017
  • Forefront ultrafast experimental techniques have recently proven their potential as new approaches to understand materials based on non-equilibrium dynamics in the time domain. The time domain approach is useful especially in disentangling complicated coupling among charge, spin and lattice degrees of freedom. Various ultrafast experiments on Fe-based superconductors have observed strong coherent oscillations of an $A_{1g}$ phonon mode of arsenic ions, which shows strong coupling to the electronic and magnetic states. This paper reviews the recent reports of ultrafast studies on Fe-based superconductor with a focus on the coherent oscillations. Experimental results with ultrashort light sources from the terahertz-infrared pulses to the hard X-rays from a free electron laser will be presented.

COMMOM MODE COMPENSATION IN FIBER OPTIC INTERFEROMETRIC SENSOR WITH LESS COHERENT LIGHT

  • Park, Kyung-Sup
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1990.10b
    • /
    • pp.1108-1111
    • /
    • 1990
  • Sorce noise effect in 1.5 Mach-Zehnder (MZ) interferometer is analyzed. It is shown numerically that with fine adjustments to the feedback gain and initial phase biases, the operating point of the interferometer to achives common mode compensation can be made to lie in a region where the measurand sensitivity is greater than it would be in a conventional Mach-Zehnder interferometer even if the source is less coherent.

  • PDF

Coherent optical transmission experiment using FSK modulation and heterodyne detection scheme (FSK/Heterodyne 변복조 방식에 의한 코히런트 광송수신 실험)

  • 박희갑
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 1991.06a
    • /
    • pp.121-125
    • /
    • 1991
  • A basic coherent optical transmission was demonstrated using FSK modulation and heterodyne detection scheme. Optical frequency of DFB LD light source at the transmitter side was stabilized with Fabry Perot etalon and bias feedback circuit. A tunable external cavity LD was used as a local oscillator at the receiver. Heterodyned output signal at IF frequency of 2GHz was measured and discussed.

  • PDF

Optical IIR lattice fiber filter design for optimum of optical signal energy (광신호 에너지 최적화를 위한 IIR 격자형 광파이버필터 설계)

  • 이채욱;김신환
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.32B no.11
    • /
    • pp.1481-1488
    • /
    • 1995
  • Due to the low loss, broadband and accurate short time delay properties of optical fiber, it has attracted as a delay medium for high speed and broad-band signal processing. In this paper, we consider the coherent optical fiber filter of IIR lattice structure, which uses coherent light sources and consists of directional couplers whose coupling coefficients are restricted between 0 and 1. Considering restrictions of directional coupler, the design formulae and condition for realibility of optical fiber filter of IIR lattice structure which makes the optimal use of optical signal energy are derived.

  • PDF

Measurement of Brillouin Backscattering for Distributed Temperature Sensor Applications

  • Kim, Su-Hwan;Kwon, Hyung-Woo;Kwon, Hyun-Ho;Jang, Hang-Seok;Kim, Jee-Hyun;Kang, Shin-Won
    • Journal of Sensor Science and Technology
    • /
    • v.20 no.1
    • /
    • pp.8-13
    • /
    • 2011
  • We present measurements of the Brillouin frequency shift in an optical fiber using a 1550 nm distributed feedback laser diode(DFB-LD) as a light source. By modulating the probe light with an electro-optic modulator, we confirm the stimulated Brillouin gain spectrum(BGS) and spontaneous BGS using the coherent detection method. We also confirm the applicability of the technique to distributed temperature sensors that measure the change in Brillouin frequency shift due to temperature variations.