• Title/Summary/Keyword: Cognitive Radio Networks

Search Result 393, Processing Time 0.027 seconds

Optimal Power Allocation and Relay Selection for Cognitive Relay Networks using Non-orthogonal Cooperative Protocol

  • Lan, Peng;Chen, Lizhen;Zhang, Guowei;Sun, Fenggang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.5
    • /
    • pp.2047-2066
    • /
    • 2016
  • In this paper, we investigate joint power allocation and relay selection (PARS) schemes in non-orthogonal cooperative protocol (NOCP) based cognitive relay networks. Generally, NOCP outperforms the orthogonal cooperative protocol (OCP), since it can provide more transmit diversity. However, most existing PARS schemes in cognitive relay networks focus on OCP, which are not suitable for NOCP. In the context of NOCP, we first derive the joint constraints of transmit power limit for secondary user (SU) and interference constraint for primary user (PU). Then we formulate optimization problems under the aforementioned constraints to maximize the capacity of SU in amplify-and-forward (AF) and decode-and-forward (DF) modes, respectively. Correspondingly, we derive the closed form solutions with respect to different parameters. Numerical results are provided to verify the performance improvement of the proposed PARS schemes.

Secrecy Performances of Multicast Underlay Cognitive Protocols with Partial Relay Selection and without Eavesdropper's Information

  • Duy, Tran Trung;Son, Pham Ngoc
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.11
    • /
    • pp.4623-4643
    • /
    • 2015
  • This paper considers physical-layer security protocols in multicast cognitive radio (CR) networks. In particular, we propose dual-hop cooperative decode-and-forward (DF) and randomize-and-forward (RF) schemes using partial relay selection method to enhance secrecy performance for secondary networks. In the DF protocol, the secondary relay would use same codebook with the secondary source to forward the source's signals to the secondary destination. Hence, the secondary eavesdropper can employ either maximal-ratio combining (MRC) or selection combining (SC) to combine signals received from the source and the selected relay. In RF protocol, different codebooks are used by the source and the relay to forward the source message secretly. For each scheme, we derive exact and asymptotic closed-form expressions of secrecy outage probability (SOP), non-zero secrecy capacity probability (NzSCP) in both independent and identically distributed (i.i.d.) and independent but non-identically distributed (i.n.i.d.) networks. Moreover, we also give a unified formula in an integral form for average secrecy capacity (ASC). Finally, our derivations are then validated by Monte-Carlo simulations.

Exploiting cognitive wireless nodes for priority-based data communication in terrestrial sensor networks

  • Bayrakdar, Muhammed Enes
    • ETRI Journal
    • /
    • v.42 no.1
    • /
    • pp.36-45
    • /
    • 2020
  • A priority-based data communication approach, developed by employing cognitive radio capacity for sensor nodes in a wireless terrestrial sensor network (TSN), has been proposed. Data sensed by a sensor node-an unlicensed user-were prioritized, taking sensed data importance into account. For data of equal priority, a first come first serve algorithm was used. Non-preemptive priority scheduling was adopted, in order not to interrupt any ongoing transmissions. Licensed users used a nonpersistent, slotted, carrier sense multiple access (CSMA) technique, while unlicensed sensor nodes used a nonpersistent CSMA technique for lossless data transmission, in an energy-restricted, TSN environment. Depending on the analytical model, the proposed wireless TSN environment was simulated using Riverbed software, and to analyze sensor network performance, delay, energy, and throughput parameters were examined. Evaluating the proposed approach showed that the average delay for sensed, high priority data was significantly reduced, indicating that maximum throughput had been achieved using wireless sensor nodes with cognitive radio capacity.

Cognitive UWB-OFDM: Pushing Ultra-Wideband Beyond Its Limit via Opportunistic Spectrum Usage

  • Arslan Huseyin;Sahin Mustafa E.
    • Journal of Communications and Networks
    • /
    • v.8 no.2
    • /
    • pp.151-157
    • /
    • 2006
  • In a continuously expanding wireless world, the number of radio systems increases every day and efficient spectrum usage becomes a more significant requirement. Ultra-wideband (UWB) and cognitive radio are two exciting technologies that offer new approaches to the spectrum usage. The main objective of this paper is to shed the first light on the marriage of these two important approaches. The strength of orthogonal frequency division multiplexing (OFDM) based UWB in co-existing with licensed systems is investigated. The opportunity concept is defined, and the requirements of the opportunistic spectrum usage are explained. It is proposed to take the UWB-OFDM from the current underlay implementation, and evolve it to a combined underlay and opportunistic spectrum usage technology, leading to cognitive UWB-OFDM. This way, we aim at making UWB more competitive in the wireless market with extended range, higher capacity, better performance, and a wide variety of applications.

An Opportunistic Channel Access Scheme for Interweave Cognitive Radio Systems

  • Senthuran, Sivasothy;Anpalagan, Alagan;Kong, Hyung Yun;Karmokar, Ashok;Das, Olivia
    • Journal of Communications and Networks
    • /
    • v.16 no.1
    • /
    • pp.56-66
    • /
    • 2014
  • We propose a novel opportunistic access scheme for cognitive radios in an interweave cognitive system, that considers the channel gain as well as the predicted idle channel probability (primary user occupancy: Busy/idle). In contrast to previous work where a cognitive user vacates a channel only when that channel becomes busy, the proposed scheme requires the cognitive user to switch to the channel with the next highest idle probability if the current channel's gain is below a certain threshold. We derive the threshold values that maximize the long term throughput for various primary user transition probabilities and cognitive user's relative movement.

RawPEACH: Multiband CSMA/CA-Based Cognitive Radio Networks

  • Chong, Jo-Woon;Sung, Young-Chul;Sung, Dan-Keun
    • Journal of Communications and Networks
    • /
    • v.11 no.2
    • /
    • pp.175-186
    • /
    • 2009
  • A new medium access control (MAC) scheme embedding physical channels into multiband carrier sense multiple access/collision avoidance (CSMA/CA) networks is proposed to provide strict quality of service (QoS) guarantee to high priority users. In the proposed scheme, two priority classes of users, primary and secondary users, are supported. For primary users physical channels are provided to ensure strict QoS, whereas secondary users are provided with best-effort service using CSMA/CA modified for multiband operation. The performance of the proposed MAC scheme is investigated using a new multiband CSMA/CA Markov chain model capturing the primary user activity and the operation of secondary users in multiple bands. The throughput of secondary users is obtained as a function of the primary user activity and other CSMA/CA parameters. It is shown that the new MAC scheme yields larger throughput than the conventional single-band CSMA/CA when both schemes use the same bandwidth.

Channel Prediction-Based Channel Allocation Scheme for Multichannel Cognitive Radio Networks

  • Lee, Juhyeon;Park, Hyung-Kun
    • Journal of Communications and Networks
    • /
    • v.16 no.2
    • /
    • pp.209-216
    • /
    • 2014
  • Cognitive radio (CR) has been proposed to solve the spectrum utilization problem by dynamically exploiting the unused spectrum. In CR networks, a spectrum selection scheme is an important process to efficiently exploit the spectrum holes, and an efficient channel allocation scheme must be designed to minimize interference to the primary network as well as to achieve better spectrum utilization. In this paper, we propose a multichannel selection algorithm that uses spectrum hole prediction to limit the interference to the primary network and to exploit channel characteristics in order to enhance channel utilization. The proposed scheme considers both the interference length and the channel capacity to limit the interference to primary users and to enhance system performance. By using the proposed scheme, channel utilization is improved whereas the system limits the collision rate of the CR packets.

A Sensing Channel Scheduling Scheme for Improving the Cognition Ability in Cognitive Radio Systems (인지 라디오 시스템에서 주파수 상황인지 능력 향상을 위한 감지 채널 스케줄링 기법)

  • Han, Jeong-Ae;Jeon, Wha-Sook
    • Journal of KIISE:Information Networking
    • /
    • v.35 no.2
    • /
    • pp.130-138
    • /
    • 2008
  • The scheme for recognizing the channel availability is one of the most important research issues in cognitive radio systems utilizing unused frequency bands. In this paper, we propose a novel scheme of selecting sensing channel in order to improve the sensing ability of frequency status in cognitive radio ad hoc networks. To fully exploit the sensing ability of each cognitive radio user, we adopt a master for a cluster which is made of several cognitive radio users. By gathering and analyzing the sensing information from cognitive radio users in the cluster, the cooperative sensing is realized. Since the transmission range of a licensed user is limited, it is possible that a master determines different sensing channels to each cognitive radio users based on their location. By making cognitive radio users sense different channels, the proposed scheme can recognize the state of wireless spectrum fast and precisely. Using the simulation, we compare the performance of the proposed scheme with those of two different compared schemes that one makes cognitive radio users recognize the frequency status based on their own sensing results and the other shares frequency status information but does not utilize the location information of licensed user. Simulation results show that the proposed scheme provides available channels as many as possible while detecting the activation of licensed user immediately.

Frequency Allocation and Path Selection Scheme in Underlay Cognitive Radio Networks Using Network Coding (네트워크 코딩을 쓰는 언더레이 인지 무선 네트워크에서의 주파수 할당과 경로 선택 기법)

  • Lee, Do-Haeng;Lee, Won Hyoung;Kang, Sung-Min;Hwang, Ho Young
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.40 no.12
    • /
    • pp.2372-2380
    • /
    • 2015
  • In this paper, we propose frequency allocation and path selection scheme in underlay cognitive radio (CR) networks using network coding. In the proposed scheme, we choose the path with consideration of network coding and interference temperature in underlay CR networks and propose an optimization problem to maximize the system throughput of secondary users (SUs). Then, we represent the proposed optimization problem as the multi-dimensional multiple-choice knapsack problem and give the theoretical upper bound for the system throughput of SUs by using linear programming. Finally, we compute the system throughput of SUs by using brute-force search (BFS) and link quality first (LQF) scheme in underlay CR networks. Simulation results show that the system throughput of SUs with BFS is higher than that with LQF in underlay CR networks with and without application of network coding, respectively.

A Predictive Connection Admission Control Using Neural Networks for Multiclass Cognitive Users Radio Networks (멀티 클래스 인지 사용자 네트워크에서 신경망을 이용한 예측 연결수락제어)

  • Lee, Jin-Yi
    • Journal of Advanced Navigation Technology
    • /
    • v.17 no.4
    • /
    • pp.435-441
    • /
    • 2013
  • This paper proposes a neural net based-predictive connection admission control (CAC) scheme for multiclass users in wireless cognitive radio networks. We classifies cognitive users(cu) into real and non real time services, and then permit only real time services to reserve the demanded resource for spectrum handoff in guard channel for provisioning the desired QoS. Neural net is employed to predict primary user's arrival on time and demanded channels. Resource scheduling scheme is based on $C_IA$(cognitive user I complete access) shown in this paper. For keeping primary users from interference, the CAC is performed on only cognitive user not primary user. Simulation results show that our schemes can guarantee the desired QoS by cognitive real time services.