• 제목/요약/키워드: Cognitive Network

검색결과 678건 처리시간 0.023초

The Performance Analysis of Cognitive-based Overlay D2D Communication in 5G Networks

  • Abdullilah Alotaibi;Salman A. AlQahtani
    • International Journal of Computer Science & Network Security
    • /
    • 제24권2호
    • /
    • pp.178-188
    • /
    • 2024
  • In the near future, it is expected that there will be billions of connected devices using fifth generation (5G) network services. The recently available base stations (BSs) need to mitigate their loads without changing and at the least monetary cost. The available spectrum resources are limited and need to be exploited in an efficient way to meet the ever-increasing demand for services. Device to Device communication (D2D) technology will likely help satisfy the rapidly increasing capacity and also effectively offload traffic from the BS by distributing the transmission between D2D users from one side and the cellular users and the BS from the other side. In this paper, we propose to apply D2D overlay communication with cognitive radio capability in 5G networks to exploit unused spectrum resources taking into account the dynamic spectrum access. The performance metrics; throughput and delay are formulated and analyzed for CSMA-based medium access control (MAC) protocol that utilizes a common control channel for device users to negotiate the data channel and address the contention between those users. Device users can exploit the cognitive radio to access the data channels concurrently in the common interference area. Estimating the achievable throughput and delay in D2D communication in 5G networks is not exploited in previous studies using cognitive radio with CSMA-based MAC protocol to address the contention. From performance analysis, applying cognitive radio capability in D2D communication and allocating a common control channel for device users effectively improve the total aggregated network throughput by more than 60% compared to the individual D2D throughput without adding harmful interference to cellular network users. This approach can also reduce the delay.

Formation of Scenarios for The Development of The Tourism Industry of Ukraine With The Help of Cognitive Modeling

  • Shelemetieva, Tetiana;Zatsepina, Nataly;Barna, Marta;Topornytska, Mariia;Tuchkovska, Iryna
    • International Journal of Computer Science & Network Security
    • /
    • 제21권7호
    • /
    • pp.8-16
    • /
    • 2021
  • The tourism industry is influenced by a large number of factors that affect the development scenarios of the tourism in different ways. At the same time, tourism is an important component of the national economy of any state, forms its image, investment attractiveness, is a source of income and a stimulus for business development. The aim of the article is to conduct an empirical study to identify the importance of cognitive determinants in the development of tourism. The study used general and special methods: systems analysis, synthesis, grouping, systematization, cognitive modeling, cognitive map, pulse method, predictive extrapolation. Target factors, indicators, and control factors influencing the development of tourism in Ukraine are determined and a cognitive model is built, which graphically reflects the nature of the influence of these factors. Four main scenarios of the Ukrainian tourism industry are established on the basis of creating a matrix of adjacency of an oriented graph and forecast modeling based on a scenario approach. The practical significance of the obtained results lies in the possibility of their use to forecast the prospects of tourism development in Ukraine, the definition of state policy to support the industry that will promote international and domestic tourism.

인지 무선 시스템에서 주파수 재사용율과 채널 추정에 따른 주파수 할당 방식의 성능 분석 (Performance Analysis of Frequency Allocation Methods Using Frequency Reuse and Channel Estimation in Cognitive Radio Systems)

  • 김태환;이태진
    • 한국통신학회논문지
    • /
    • 제34권5A호
    • /
    • pp.391-400
    • /
    • 2009
  • 최근 이동 통신 네트워크는 2G에서 3G로 이동하고 있으며 주파수의 효율성을 추구하고자 한다. 인지 무선 통신(Cognitive radio) 기술은 secondary 네트워크와 primary 네트워크의 공존을 허용함으로써 주파수의 효율성을 달성할 수 있는 기술로 떠오르고 있다. 하지만, primary 네트워크의 주파수 재사용율을 고려하지 않는 기존 인지무선 통신 방식은 primary 네트워크와 secondary 네트워크를 포함한 전체 네트워크의 성능을 저하시키게 된다. 본 논문에서는 secondary 네트워크가 primary 네트워크의 파일럿 신호를 감지하여 최적의 가용 주파수를 선택하는 복잡도가 낮은 방식을 제안한다. 그리고, primary 네트워크의 간섭을 최소화하는 제약조건을 가지면서 업링크와 다운링크의 용량을 최대화하는 최적화 문제를 고려한다. 시뮬레이션을 통하여 제안방법과 기존방법의 성능을 비교하였으며, 제안방법이 기존방법보다 primary 네트워크의 주파수 재사용율이 작고 채널 사용 변화가 심할 때 특히 우수한 성능을 보임을 확인할 수 있었다.

Cognitive Virtual Network Embedding Algorithm Based on Weighted Relative Entropy

  • Su, Yuze;Meng, Xiangru;Zhao, Zhiyuan;Li, Zhentao
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제13권4호
    • /
    • pp.1845-1865
    • /
    • 2019
  • Current Internet is designed by lots of service providers with different objects and policies which make the direct deployment of radically new architecture and protocols on Internet nearly impossible without reaching a consensus among almost all of them. Network virtualization is proposed to fend off this ossification of Internet architecture and add diversity to the future Internet. As an important part of network virtualization, virtual network embedding (VNE) problem has received more and more attention. In order to solve the problems of large embedding cost, low acceptance ratio (AR) and environmental adaptability in VNE algorithms, cognitive method is introduced to improve the adaptability to the changing environment and a cognitive virtual network embedding algorithm based on weighted relative entropy (WRE-CVNE) is proposed in this paper. At first, the weighted relative entropy (WRE) method is proposed to select the suitable substrate nodes and paths in VNE. In WRE method, the ranking indicators and their weighting coefficients are selected to calculate the node importance and path importance. It is the basic of the WRE-CVNE. In virtual node embedding stage, the WRE method and breadth first search (BFS) algorithm are both used, and the node proximity is introduced into substrate node ranking to achieve the joint topology awareness. Finally, in virtual link embedding stage, the CPU resource balance degree, bandwidth resource balance degree and path hop counts are taken into account. The path importance is calculated based on the WRE method and the suitable substrate path is selected to reduce the resource fragmentation. Simulation results show that the proposed algorithm can significantly improve AR and the long-term average revenue to cost ratio (LTAR/CR) by adjusting the weighting coefficients in VNE stage according to the network environment. We also analyze the impact of weighting coefficient on the performance of the WRE-CVNE. In addition, the adaptability of the WRE-CVNE is researched in three different scenarios and the effectiveness and efficiency of the WRE-CVNE are demonstrated.

Interference Minimization Using Cognitive Spectrum Decision for LED-ID Network

  • Saha, Nirzhar;Le, Nam Tuan;Jang, Yeong Min
    • 한국통신학회논문지
    • /
    • 제38B권2호
    • /
    • pp.115-121
    • /
    • 2013
  • LED-ID (Light Emitting Diode-Identification) network is envisioned to be the next generation indoor wireless communication medium by which simultaneously high speed data transmission, identification, and illumination are possible. In spite of being extremely promising, it suffers from much impairment. Signals having different propagation paths can suffer from delays, and phase shifts which will eventually result interference. The probability of interference is also increased when communication links are established between a tag and several readers. Therefore it is necessary to reduce the interference in LED-ID network to ensure quality of service. It is possible to avoid interference by knowing the information about readers prior to assign the available spectrum. In this paper, we have proposed dynamic spectrum decision using cognitive radio concept. The simulation results justify that the proposed scheme is better than the conventional scheme.

더블 레일리 페이딩 채널에서의 스펙트럼 공유 인지 무선 네트워크에 대한 성능 분석 (Performance Analysis of Spectrum Sharing Cognitive Radio Networks over Double Rayleigh Fading Channels)

  • 이주현;이재홍
    • 방송공학회논문지
    • /
    • 제19권2호
    • /
    • pp.272-275
    • /
    • 2014
  • 본 논문에서는 스펙트럼 공유 인지 무선 네트워크를 다룬다. 2차 사용자 네트워크의 채널을 더블 레일리 페이딩으로 가정하였을 때 정확한 불능 확률 값을 수식유도를 통해 구하고 불능 확률의 근사식 또한 얻어낸다. 모의실험을 통해 분석한 불능 확률이 정확함을 확인하였고 1차 사용자에서의 최대 허용 간섭 변화에 따른 성능변화를 확인하였다.

Robust Power Control for Cognitive Radio in Spectrum Underlay Networks

  • Zhao, Nan;Sun, Hongjian
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제5권7호
    • /
    • pp.1214-1229
    • /
    • 2011
  • Power control is a key technique in spectrum underlay cognitive network to guarantee the interference temperature limit of the primary users (PUs) and the quality of service of the secondary users (SUs). In this paper, a robust power control scheme via link gain pricing with $H_{\infty}$ estimator is proposed. The scheme guarantees the interference temperature of the PUs through operating in the network-centric manner, and keeps the fairness between the SUs through link gain pricing. Furthermore, the $H_{\infty}$ filter is also used in the proposed scheme to estimate the channel variation, and thus the power control scheme is robust to the severe channel fading. Plenty of simulations are taken, and prove its superior robust performance against the channel fading, and its effectiveness in guaranteeing the interference temperature limit of the PUs.

Soft Combination Schemes for Cooperative Spectrum Sensing in Cognitive Radio Networks

  • Shen, Bin;Kwak, Kyung-Sup
    • ETRI Journal
    • /
    • 제31권3호
    • /
    • pp.263-270
    • /
    • 2009
  • This paper investigates linear soft combination schemes for cooperative spectrum sensing in cognitive radio networks. We propose two weight-setting strategies under different basic optimality criteria to improve the overall sensing performance in the network. The corresponding optimal weights are derived, which are determined by the noise power levels and the received primary user signal energies of multiple cooperative secondary users in the network. However, to obtain the instantaneous measurement of these noise power levels and primary user signal energies with high accuracy is extremely challenging. It can even be infeasible in practical implementations under a low signal-to-noise ratio regime. We therefore propose reference data matrices to scavenge the indispensable information of primary user signal energies and noise power levels for setting the proposed combining weights adaptively by keeping records of the most recent spectrum observations. Analyses and simulation results demonstrate that the proposed linear soft combination schemes outperform the conventional maximal ratio combination and equal gain combination schemes and yield significant performance improvements in spectrum sensing.

  • PDF

Spectrum Sensing and Data Transmission in a Cognitive Relay Network Considering Spatial False Alarms

  • Tishita, Tasnina A.;Akhter, Sumiya;Islam, Md. Imdadul;Amin, M. Ruhul
    • Journal of Information Processing Systems
    • /
    • 제10권3호
    • /
    • pp.459-470
    • /
    • 2014
  • In this paper, the average probability of the symbol error rate (SER) and throughput are studied in the presence of joint spectrum sensing and data transmission in a cognitive relay network, which is in the environment of an optimal power allocation strategy. In this investigation, the main component in calculating the secondary throughput is the inclusion of the spatial false alarms, in addition to the conventional false alarms. It has been shown that there exists an optimal secondary power amplification factor at which the probability of SER has a minimum value, whereas the throughput has a maximum value. We performed a Monte-Carlo simulation to validate the analytical results.

Survey of Cognitive Radio VANET

  • He, Xinxin;Shi, Weisen;Luo, Tao
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제8권11호
    • /
    • pp.3837-3859
    • /
    • 2014
  • Vehicular Ad hoc Networks (VANET) becomes more popular in industry, academia and government. However, Typical VANET is challenged by high speed mobility and insufficient spectrum resources over congested scenarios. To address those serious problems, some articles have introduced Cognitive Radio (CR) technology into VANET and formed CR-VANET. In this article, we propose an overview of CR-VANET by exploring different architectures and features. Moreover, we provide taxonomy of state-of-the-art papers in this emerging field and the key articles are well analyzed respectively. In addition, we illustrate both research and application frameworks of CR-VANET based on our works, and propose some open research issues for inspiring future work.