• Title/Summary/Keyword: Cogging force

Search Result 94, Processing Time 0.031 seconds

Improvement of Tracking Accuracy of Positioning Systems with Iron Core Linear DC Motors

  • Song, Chang-Kyu;Kim, Gyung-Ho
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.6 no.1
    • /
    • pp.31-35
    • /
    • 2005
  • Higher productivity requires high-speed motion of machine tool axes. The iron core linear DC motor (LDM) is widely accepted as a viable candidate for high-speed machine tool feed unit. LDM, however, has two inherent disturbance force components, namely cogging and thrust force ripple. These disturbance forces directly affect the tracking accuracy of the feeding system and must be eliminated or reduced. In order to reduce motor ripple, this research adapted the feedforward compensation method and neural network control. Experiments carried out with the linear motor test setup show that these control methods are effective in reducing motor ripple.

Rotor Shape Design of an Interior PM Type BLDC Motor for Improving Mechanical Vibration and EMI Characteristics

  • Hur, Jin;Kim, Byeong-Woo
    • Journal of Electrical Engineering and Technology
    • /
    • v.5 no.3
    • /
    • pp.462-467
    • /
    • 2010
  • This paper presents the rotor shape optimization of an interior type permanent magnet (IPM) motor for a reduction of vibration and Electromagnetic Interference (EMI). The vibration and EMI in permanent magnet motors is generated by cogging torque ripple, radial force and commutation torque ripple. Consequently, in order to improve vibration and EMI, the optimal notches are put on the rotor pole with an arc shape proposed. The variation of vibration frequency due to the cogging torque and radial force of each model is computed by the finite element method (FEM). From the analysis result and experiment, we confirmed the proposed model has remarkably improved the vibration and EMI.

A study on Cogging Torque attenuation structure of traction motor (트랙션용 전동기의 코깅토크 감쇄 구조에 관한 연구)

  • Ko, Hyung-Keun;Kim, Byung-Kook;Lee, Sang-Kyu;Cho, Jae-Hee;Park, Tae-Hong
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.2365-2372
    • /
    • 2011
  • The Cogging Torgue is non-uniform torgue in motor which causes noise and vibration to synchronous motors such as BLDC motor, and regardless of load current, is generated by the interaction between permanent magnet rotor and stator slot which is the force of tangential direction that tends to move into the position where the magnetic energy of motor system is minimal. such Cogging Torgue shall be considered in design stage since it is the main factor of motor's noise and vibration. Understanding that Cogging Torgue is generated by the interaction between relatively low stage harmonic flux density gab of permanent magnet rotor and steel slot of stator. This study proposes the method if reducing Cogging Torgue using response surface method which is a kind of design if experiment.

  • PDF

Optimum Design of Stator and Rotor Shape for Cogging Torque Reduction in Interior Permanent Magnet Synchronous Motors

  • Yu, Ju-Seong;Cho, Han-Wook;Choi, Jang-Young;Jang, Seok-Myeong;Lee, Sung-Ho
    • Journal of Power Electronics
    • /
    • v.13 no.4
    • /
    • pp.546-551
    • /
    • 2013
  • This paper deals with the optimum design of the stator and rotor shape of the interior permanent magnet synchronous motors (IPMSM) that are used in applications for automobiles. IPMSMs have the following advantages: high power, high torque, high efficiency, etc. However, cogging torque which causes noise and vibrations is generated at the same time. The optimum design of shape of a IPMSM was carried out with the aim of reducing cogging torque. Six variables which affect to the performance of a IPMSM are chosen. The main effect variables were determined and applied to the response surface methodology (RSM). When compared to the initial model using the finite elements method (FEM), the optimum model highly reduces the cogging torque and improves the total harmonics distortion (THD) of the back-electro motive force (EMF). A prototype of the designed model was manufactured and experimented on to verify the feasibility of the IPMSM.

The Analysis of Skewed Armature Effect for Reduction of End Edge Cogging Force of Stationary Discontinuous Armature PMLSM (전기자 분산배치 PMLSM의 단부 코깅력 저감을 위한 전기자 스큐각의 영향 분석)

  • Kim, Yong-Jae;Kim, Jae-Hong
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.9 no.2
    • /
    • pp.243-248
    • /
    • 2014
  • The permanent magnet linear synchronous motors facilitate maintenance, for it is structurally simple compare to rotating machine and has lots of advantage such as a precision control, high speed, high thrust and so on. However, it causes an increase of material cost because of structural characteristics that need to arranges the armature on the full length of transportation lines. Thus, in order to resolve this problem, we propose the discontinuous arrangement method of the armature but the edge always exists due to the structure when the armature is arranged discontinuously. Due to this edge, the cogging force is greatly generated and it causes thrust force ripple generating noise, vibration and decline of performance. Therefore, in this paper, we examined the characteristic of end edge according to the skew angle through 3-D numerical analysis using finite element method(FEM) and improved the operation characteristics.

Effects of V-Skew on the Torque Characteristic in Permanent Magnet Synchronous Motor

  • Lee, Jong Gun;Lee, Ki Wook;Park, Gwan Soo
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.2 no.4
    • /
    • pp.390-393
    • /
    • 2013
  • In this paper, we proposed how the V-skew applied of the rotor to inprove the characteristics of cogging torque in large PMSM. Large PMSM is difficult to apply a pitch of the diagonal magnetic skew because of the motor's structure and making. In addition, the force in the direction of z-axis occurs when the diagonal skew is applied. So we are applying the optimal v-skew to reduce torque ripple and cogging torque because this reduces the noise and vivration on the motor. Throug FEM dD analysis, we studied to find the optimal v-skew angle for reducing torque ripple.

Design of Digital Controller Based DSP for Thrust Ripples Suppression of PMLSM (PMLSM의 추력 리플 저감을 위한 DSP기반 디지털 제어기의 설계)

  • Jin, Sang-Min;Zhu, Yu-Wu;Kim, Do-Sun;Cho, Yun-Hyun
    • Proceedings of the KIEE Conference
    • /
    • 2008.04c
    • /
    • pp.140-142
    • /
    • 2008
  • Thrust ripples in Permanent Magnet Linear Motor(PMLSM) are mainly generated by cogging force. Cogging force caused by the interaction between the iron core and the Permanent Magnet(PM), and end effect. This paper has proposed a control method for thrust ripples suppression and design of one-chip proceeding digital controller using TMS320LF2407. This control method is realized by Field Oriented Control(FOC) adding to current compensation. The effectiveness of proposed control method is verified by experimentation comparing between the compensation and non-compensation.

  • PDF

The Optimal Design of Fractional-slot SPM to Reduce Cogging Torque and Vibration

  • Cho, Gyu-Won;Jang, Woo-Sung;Jang, Ki-Bong;Kim, Gyu-Tak
    • Journal of Electrical Engineering and Technology
    • /
    • v.7 no.5
    • /
    • pp.753-758
    • /
    • 2012
  • This paper deals with the analysis of vibration and noise sources in a modular-type SPM fractional-slot motor. To reduce cogging torque, torque ripple and unequal radial force, which are the main causes of the electromagnetic vibration, the optimal shape of notch and magnet are designed.

The Rotor Shape Design of IPM Type BLDC Motor for Minimization of Vibration (IPM type BLDC 전동기의 진동저감을 위한 회전자 형상설계)

  • Reu, Jin-Wook;Kang, Gyu-Hong;Hur, Jin
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.895_896
    • /
    • 2009
  • this paper presents a rotor shape optimization of interior type permanent magnet (IPM) motor for vibration minimization. the vibration of permanent magnet motor is generated by cogging torque, radial force and commutation torque ripple which are electromagnetic source of vibration. In order to minimize the vibration, the optimal notches are put on the rotor pole face and the arc type pole face is applied. The variations of cogging torque and radial force of each model vibration frequency are computation by finite element method (FEM) and the validity of the analysis and rotor shape design is confirmed by vibration experiments.

  • PDF

Analysis and Design of a Novel-Shape Permanent Magnet Synchronous Motor for Minimization of Torque Ripple and Iron Loss

  • Kim, Jin-Hong;Seo, Jung-Moo;Jung, Hyun-Kyo;Won, Chung-Yuen
    • Journal of Magnetics
    • /
    • v.19 no.4
    • /
    • pp.411-417
    • /
    • 2014
  • This paper presents the shape optimization of a permanent magnet synchronous motor to reduce the torque ripple and iron loss. Specifically, the harmonics of the electromotive force and cogging torque are decreased by adjusting the permanent magnet arrangement and non-uniform air gap length. In addition, an additional flux path along the q-axis is proposed with a unique rotor shape to increase the q-axis inductance and reluctance torque. The improvement in the performance of the proposed model is verified with simulated and experimental results.