• Title/Summary/Keyword: Cogging Torque

Search Result 273, Processing Time 0.041 seconds

Acoustic Noise Source Identification and Analysis of Dynamic Characteristics Parameters In BLDC Fan Motor (BLDC Fan Motor의 소음원 규명 및 동특성 분석)

  • Shin, Hyoun-Jeong;Lee, En-Sang
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.10
    • /
    • pp.1397-1402
    • /
    • 2013
  • This study researched cause of resonance noise for BLDC motor used in the refrigerator. it is difficult to measure dynamic characteristics for small sized fan & rotor system with conventional excitation method. Therefore this study performed electric exiting method and natural frequency method using microphone instead of conventional excitation and showed validity of these methods. Study result showed that tortional vibration frequency of fan & rotor system and natural bending frequency of the fan were matched with exciting frequency of BLDC motor caused by commutating ripple torque. And this frequency match caused resonance of the system. The study analyzed main parameters of this phenomenon and suggested alternative solution.

Optimal Design of an In-Wheel Permanent Magnet Synchronous Motor for mobile robot (로봇 구동용 In wheel 영구자석 동기전동기의 코깅 토크 저감을 위한 영구자석 최적 설계)

  • Shin, Dong-Joo;Yang, Byoung-Yull;Hwang, Kyu-Yun;Kwon, Byung-Il
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.688_689
    • /
    • 2009
  • This paper presents a multi-objective optimal design process for an in-wheel permanent magnet synchronous motor (PMSM) for high performance. In order to improve the characteristics of the PMSM such as the cogging torque, torque ripple and the back-EMF, the modified Taguchi method and the response surface method (RSM) are utilized. In addition, results of the proposed model are compared with the initial design and it is verified by 2D FEM.

  • PDF

Characteristics of SPMSM for electro-hydraulic actuator according to the slot number (직동력 고응답 엑츄에이터 구동용 표면부착형 영구자석형 동기 전동기의 슬롯 수에 따른 특성 연구)

  • Kwon, Soon-O;Lee, Byeong-Hwa;Lee, Jeong-Jong;Kim, Dae-Sung;Kim, Bum-Joong;Hong, Jung-Pyo
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.824_825
    • /
    • 2009
  • This paper deals with the characteristics of SPMSM for hydraulic actuator according to the slot number. As a design variable, slot number affects the winding configuration and this leads to the total variation of motor characteristic. Therefore number of slot should be cautiously determined. Three SPMSMs are designed and THD of back emf, cogging torque, and torque ripple are compared. Among three SPMSMs, 36slots with 12 pole is chosen for further development considering motor characteristics and manufacturing.

  • PDF

Analysis of Outer Rotor Type BLDC motor vibration characteristics according to slot combination (Outer Rotor Type BLDC 모터의 슬롯 수에 따른 진동 특성 분석)

  • Bang, Ki-Chang;Kim, Kwang-Seok;Kwon, Joong-Hak;Ree, Yeong-Uk;Hwang, Sang-Moon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.04a
    • /
    • pp.196-201
    • /
    • 2008
  • This paper is about electromagnetic vibration source in outer rotor type of BLDC motors. Experiments are carried out with three pole-slot combinations which are 6 slots, 12 slots, and 24 slots with 4 poles rotor. According to results, vibration sources separate into electromagnetic and mechanical factors. Using the finite element method (FEM), It is analyed that vibration characteristics of electromagnetic source in each type. This paper shows electromagnetic sensitivity to vibration, and introduces necessary point in lower vibration motors. Also rotor balance is important to prevent uneven distribution of magnetic flux between rotor and stator.

  • PDF

Determination Method of Centerpost Distance of Interior Permanent Magnet Synchronous Motor for Electric Vehicle Traction Motor considering Mechanical Safety

  • Kim, Sung-Jin;Kim, Yong-Jae;Jung, Sang-Yong;Suzuki, Kenji
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.2 no.1
    • /
    • pp.51-56
    • /
    • 2013
  • With the active development of hybrid electric vehicle (HEV), the application of interior permanent magnet synchronous motor (IPMSM) has been expanded. As wide driving region of IPMSM for electric vehicle (EV) traction motor is required, many studies are conducted to improve characteristics of a motor in both low and high-speed driving regions. A motor in high-speed driving region generates (produces) large stress to the rotor. Thus, the rotor needs to be designed considering the mechanical safety. Therefore, in this paper, we conducted stress analysis and electromagnetic analysis to determine the centerpost's distance which is considered important during the design of IPMSM for EV traction motor in order to secure mechanical safety and satisfy specifications of output requirement.

Comparison of Experimental Design and Evolution Strategy for Optimal Design of BLDC Motor (BLDC 전동기 회전자 자극의 최적화에 대한 진화전략 및 실험적 설계기법의 상호 비교)

  • Yi, H.K.;Bae, B.H.;Woo, J.S.;Hahn, J.H.;Park, S.J.;Kwon, Y.A.
    • Proceedings of the KIEE Conference
    • /
    • 2004.04a
    • /
    • pp.43-45
    • /
    • 2004
  • This paper presents the optimal design of a brushless DC motor(BLDC) keeping the average torque and cogging torque of the initial model while minimizing the volume of magnet pole. Experimental design method and evolution strategy technique are performed for the shape optimization. The presented optimal designs show the both methods have the almost same result.

  • PDF

A Study on the Improvement of Dynamic Characteristics in Interior Permanent Magnet motor by Rotor Shape Design (동특성 향상을 위한 매입형 영구자석 전동기의 회전자 형상 설계)

  • Yun, Byung-Chae;Lee, Dong-Yeup;Jang, Ki-Bong;Kim, Gyu-Tak
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.862-863
    • /
    • 2008
  • This paper presents the improvement of dynamic characteristics in Interior Permanent Magnet (IPM) type BLDC motor with notch. The notch is applied on the surface of the rotor to reduce the cogging torque and to improve dynamic characteristics. The current, inductance and torque of initial model and optimal model are analyzed by FEA. The validity of improved dynamic characteristics is confirmed.

  • PDF

Comparative Study of Dual-airgap Flux Switching and Spoke-type Interior Permanent Magnet Machines with Phase-group Concentrated-coil Windings (상 그룹 집중권 권선을 갖는 2중 공극 플럭스 스위칭기기와 스포크타입 매입형 영구자석 기기의 비교 연구)

  • Zhao, Wenliang;Kwon, Byung-il
    • Proceedings of the KIEE Conference
    • /
    • 2015.07a
    • /
    • pp.680-681
    • /
    • 2015
  • This paper proposes a comparative study of dual-airgap flux switching permanent magnet (FSPM) and spoke-type interior permanent magnet (S-IPM) machines equipped with phase-group concentrated-coil (PGCC) windings. Both of the investigated machines are the same size and material amounts which are compared at the same operating conditions. All the relevant machine performance including back electromotive force (EMF), cogging torque, and electromagnetic torque are analyzed by a 2-D time-stepping finite element method (FEM).

  • PDF

Efficiency Optimal Design of a Brushless DC Motor Considering the Magnetization Direction of Permanent Magnet (영구자석의 착자방향을 고려한 브러시리스DC 전동기의 효율 최적화 설계)

  • Song, Jeong-Hyun;Kim, Byung-Taek
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.17 no.3
    • /
    • pp.241-247
    • /
    • 2011
  • This paper is intended to improve efficiency of two-phase BLDC motor using analytical and statistical methods, and then the stability of the starting for the designed model is investigated. The characteristics of the motor according to magnetization directions of permanent magnet are analyzed through the analytical method, and design variables that affect the efficiency are selected. Preliminary optimal design is performed using the analytical method with the design variable. The RSM (Response Surface Method) based on the FEA (Finite Element Analysis) is applied to complement errors of the analytical method. As a result, the optimal design is determined. Finally, the stability of the starting for the optimal designed model is evaluated by analyzing cogging torque, and it is verified through the FEA.

Finite Element Analysis of a BLDC Motor with Static Rotor Eccentricity (회전자의 정적 편심을 고려한 BLDC 전동기의 유한요소해석)

  • Park, Seung-Chan;Lee, Jin-Woo;Yang, Byoung-Yull;Kwon, Byung-Il
    • Proceedings of the KIEE Conference
    • /
    • 2000.07b
    • /
    • pp.611-613
    • /
    • 2000
  • Rotor eccentricity exists extensively in BLDC motors because of manufacturing imprecision or bearing defects. In this paper, magnetic fields of a BLDC motor with static rotor eccentricity are analyzed by the time- stepping finite element method. Torque ripple, cogging torque, winding current, counter-em! and unbalanced magnetic force characteristics are obtained. These results are compared with those of a non-eccentric BLDC motor.

  • PDF