• Title/Summary/Keyword: Cogeneration power plant

Search Result 52, Processing Time 0.021 seconds

A study on the calculation of carbon credit according to the supply temperature of cogeneration (열병합발전 공급온도에 따른 탄소 배출권 산정 연구)

  • Choi, SangMi;Kim, Minsung;Kim, Soyeon;Lim, JiHun;Jeong, SangHun
    • Plant Journal
    • /
    • v.18 no.2
    • /
    • pp.46-51
    • /
    • 2022
  • As GHG reduction becomes a major global issue, the importance and interest of ETS is increasing. Korea experienced positive effects of the system since the introduction of ETS in 2015, but also faced various problems. The focus of this study is on the issue of applying the ETS system to the group energy of industrial complexes. The group energy of industrial complexes is a unique industrial form of Korea that cannot be found in the world. Therefore, if the system is implemented in the same way as the preceding countries, it will inevitably cause problems. In particular, the group energy of industrial complexes has the characteristic that the conditions and amount of heat supplied are dtermined according to the demands of customers and the amount of power generation is determined accordingly. We investigated how differenct temperatures of heat produced in cogeneration affect carbon credit calculations.

  • PDF

Operation Results of the SOFC System Using 2 Sub-Module Stacks (2 모듈 스택을 이용한 SOFC 시스템 운전결과)

  • Lee, Tae-Hee
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.21 no.5
    • /
    • pp.405-411
    • /
    • 2010
  • A 5kW class SOFC cogeneration system consisted of a hot box part, a cold BOP (balance of plant) part, and a hot water reservoir. The hot box part contained a stack, a fuel reformer, a catalytic combustor, and heat exchangers. A cold BOP part was composed of blowers, pumps, a water trap, and system control units. A 5kW stack was designed to integrate 2 sub-modules. In this paper, the 5kW class SOFC system was operated using 2 short stacks connected in parallel to test the sub-module and the system. A short stack had 15 cells with $15{\times}15 cm^2$ area. When a natural gas was used, the total power was about 1.38 kW at 120A. Because the sub-modules were connected in parallel and current was loaded using a DC load, voltages of sub-modules were same and the currents were distributed according to the resistance of sub-modules. The voltage of the first stack was 11.46 V at 61A and the voltage of the second stack was 11.49V at 59A.

A Study on Combustion Characteristics of Wood Biomass for Cogeneration Plant (열병합 발전소용 목질계 바이오매스의 연소 특성에 관한 연구)

  • Ryu, Jeong-Seok;Kim, Ki-Seok;Park, Soo-Jin
    • Applied Chemistry for Engineering
    • /
    • v.22 no.3
    • /
    • pp.296-300
    • /
    • 2011
  • In this work, various wood biomasses were used to determine the combustion characteristics for the fuel of cogeneration plant. Combustion characteristics of four types, i.e., (i) forest products, (ii) recycled wood, (iii) empty fruit bunch, and (iv) palm kernel shell, were examined via thermal gravimetric analyzer (TGA) in air atmosphere and coal was used as a comparison group. From the TGA results, the combustion of the wood biomass was occurred in the range of 280 to $420^{\circ}C$, which was lower than that of coal. Forest product showed the lowest activation energy (0.4 kJ/mol) compared to that of other wood biomasses (about 6 to 14 kJ/mol) and coal (64 kJ/mol). In addition, the reaction rate constant of the wood biomass was lower than that of coal. These results indicate the higher combustion initiation rate of wood biomass due to the high content of volatile matter, which had a low boiling point.

Evaluation Study on the Effects of $NO_x$ Reduction Techniques on the Performance and the Emission Characteristics of Medium Size Gasification Combined Cycle Plant (중급 규모 가스화 복합발전 플랜트의 $NO_x$ 저감 방식이 성능 및 환경특성에 미치는 영향에 관한 평가 연구)

  • Lee, Chan;Seo, Je-Young
    • Journal of Energy Engineering
    • /
    • v.10 no.4
    • /
    • pp.363-369
    • /
    • 2001
  • Process design and performance evaluation were made for medium-size gasification combined/cogeneration plant. Based on the designed plant process configuration, the effects of $NO_x$ reduction techniques on the $NO_x$ emission, the power output, the efficiency and the stability of plant are investigated by applying various $NO_x$ reduction methods such as unsaturated/saturated nitrogen injection and fuel saturation of gas turbine combustor. The $NO_x$ reduction by nitrogen injection is more remarkable than that by fuel saturation, and its effect can be more enhanced by using saturated nitrogen. In addition, the applications of $NO_x$ reduction techniques accompany the improvement of plant power output and efficiency with the decrease of $NO_x$ emission, while it can cause unstable gas turbine operation.

  • PDF

Economic analysis of Frequency Regulation Battery Energy Storage System for Czech combined heat & power plant (체코 열병합발전소 주파수조정용 배터리에너지저장장치 경제성 분석)

  • KIM, YuTack;Cha, DongMin;Jung, SooAn;Son, SangHak
    • Journal of Energy Engineering
    • /
    • v.29 no.2
    • /
    • pp.68-78
    • /
    • 2020
  • According to the new climate change agreement, technology development to reduce greenhouse gases is actively conducted worldwide, and research on energy efficiency improvement in the field of power generation and transmission and distribution is underway [1,2]. Economic analysis of the operation method of storing and supplying surplus electricity using energy storage devices, and using energy storage devices as a frequency adjustment reserve power in regional cogeneration plants has been reported as the most profitable operation method [3-7]. Therefore, this study conducted an economic analysis for the installation of energy storage devices in the combined heat and power plant in the Czech Republic. The most important factor in evaluating the economics of battery energy storage devices is the lifespan, and the warranty life is generally 10 to 15 years, based on charging and discharging once a day. For the simulation, the ratio of battery and PCS was designed as 1: 1 and 1: 2. In general, the primary frequency control is designed as 1: 4, but considering the characteristics of the cogeneration plant, it is set at a ratio of up to 1: 2, and the capacity is simulated at 1MW to 10MW and 2MWh to 20MWh according to each ratio. Therefore, life was evaluated based on the number of cycles per year. In the case of installing a battery energy storage system in a combined heat and power plant in the Czech Republic, the payback period of 3MW / 3MWh is more favorable than 5MW / 5MWh, considering the local infrastructure and power market. It is estimated to be about 3 years or 5 years from the simple payback period considering the estimated purchase price without subsidies. If you lower the purchase price by 50%, the purchase cost is an important part of the cost for the entire lifetime, so the payback period is about half as short. It can be, but it is impossible to secure profitability through the economy at the scale of 3MWh and 5MWh. If the price of the electricity market falls by 50%, the payback period will be three years longer in P1 mode and two years longer in P2 and P3 modes.

Development of Design Technology for Combined and Cogeneration Power Plant (복합열병합 발전 플랜트의 설계기술 개발사업의 추진 전략)

  • 오군섭
    • Journal of the KSME
    • /
    • v.35 no.6
    • /
    • pp.542-553
    • /
    • 1995
  • 복합열병합 발전 플랜트의 장점은 도시 근교에 발전 플랜트를 간단히 건설할 수 있으며, 공해를 크게 줄이면서 독립적인 발전이 가능하다는 측면에서 신도시, 신공업단지, 도서지방 등에서 아주 유리한 것으로 알려져 있다. 또한 가스 터빈 배기열을 이용하여 대규모 주거 지역이나 공업 단 지내에서 필요한 난\ulcorner냉방열이나 공업열원으로의 활용이 손쉬우며, 주변 시설이 복잡하지 않고, 개선된 연소기술에 의하여 공해를 크게 줄일 수 있다. 최근 들어 분당\ulcorner일산\ulcorner부천 지역 등에 열병합 플랜트가 건설되고 있으나 거의 모든 설계기술은 외국 기술에 의존되고 있으며, 국산화 율도 극히 저조하여 '93년도에 완공된 부천 화력(473MW)의 경우 약 30% 정도이다. 복합열병합 발전 시스템은 가스 터빈, 스팀 터빈 등의 터보기계 기술을 근간으로 하며, 열회수장치 및 열교 환장치의 설계기술, 각종 제어기술 등의 종합 설계기술로서 이미 선진국에서는 실용화된지 오 래되었으며 우리 나라에도 여러 종류의 플랜트가 도입되어 사용되고 있다.

  • PDF

Field study of 5kW class PEMFC system (5kW급 고분자전해질 연료전지 시스템 실증연구)

  • Lee, SooJae;Choi, Dae Hyun;Jun, HeeKwon
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.87.1-87.1
    • /
    • 2011
  • The residential Fuel Cell system has high efficiency of 85% with transferring natural gas to electrical power and heat, directly and it is a friendly environmental new technology in that $CO_2$ emission can reduce 40% compared with conventional power generator and boiler. The residential fuel cell system consists of two main parts which have electrical and hot storage units. The electrical unit contains a fuel processor, a stack, an inverter, a control unit and balance of plant(BOP), and the cogeneration unit has heat exchanger, hot water tank, and auxiliaries. 5kW class fuel process was developed and tested from 2009, it was evaluated for long-term durability and reliability test including with improvement in optimal operation logic. Stack development was crried out through improvement of design and evaluation protocol. Development of system controller was successfully accomplished through strenuous efforts and original control logic was optimized in 5kW class PEMFC system. In addition, we have been focused on development of system process and assembly technology, which bring about excellent improvement of reliability of system. The 5kW class PEMFC system was operated under dynamic conditions for 1,000 hours and it showed a good performance of total efficiency and durability.

  • PDF

An Economic Feasibility Study on Power Plant Construction and Operation Using Real Options (실물옵션을 활용한 발전소 건설 타당성 분석)

  • Yun, Won-Cheol;Sonn, Yang-Hoon;Kim, Suduk
    • Environmental and Resource Economics Review
    • /
    • v.12 no.2
    • /
    • pp.217-244
    • /
    • 2003
  • As energy industry is undergoing a rapid structural changes, economic feasibility analysis based on the conventional discounted cash flow (DCF) method has limitations to incorporate management's flexibilities. We present a real options pricing method (ROPM) which can be applied to an energy sector as an alternative. In order to examine the usefulness of ROPM, this study compares the result of DCF method applied to the investment of cogeneration power plant with that based on the ROPM incorporating the value of real of options inherent in the project. The simulation results show that the value of investment opportunities improves using ROPM compared to that with the conventional DCF methods. Therefore, a specific project which appears to be unprofitable from the conventional point of view could be, actually, an economically feasible one based on ROPM method, when properly incorporating the management's flexibilities inherent in the project.

  • PDF

Optimization Process Models of CHP and Renewable Energy Hybrid Systems in CES (구역전기 사업시 CHP와 신재생에너지 하이브리드 시스템의 최적공정 모델)

  • Lee, Seung Jun;Kim, Lae Hyun
    • Journal of Energy Engineering
    • /
    • v.26 no.2
    • /
    • pp.99-120
    • /
    • 2017
  • In SS branch of Korea District Heating Corporation, Combined Heat & Power power plant with 99MW capacity and 98Gcal / h capacity is operated as a district electricity business. In this region, it is difficult to operate the generator due to the problem of surplus heat treatment between June and September due to the economic recession and the decrease in demand, so it is urgent to develop an economical energy new business model. In this study, we will develop an optimized operation model by introducing a renewable energy hybrid system based on actual operation data of this site. In particular, among renewable energy sources, fuel cell (Fuel Cell) power generation which can generate heat and electricity at the same time with limited location constraints, photovoltaic power generation which is representative renewable energy, ESS (Energy Storage System). HOMER (Hybrid Optimization of Multiple Energy Resources) program was used to select the optimal model. As a result of the economic analysis, 99MW CHP combined cycle power generation is the most economical in terms of net present cost (NPC), but 99MW CHP in terms of carbon emission trading and renewable energy certificate And 5MW fuel cells, and 521kW of solar power to supply electricity and heat than the supply of electricity and heat by 99MW CHP cogeneration power, it was shown that it is economically up to 247.5 billion won. we confirmed the results of the improvement of the zone electricity business condition by introducing the fuel cell and the renewable energy hybrid system as the optimization process model.

Virtual Analysis of District Heating System Using ENetPLAN (EnetPLAN을 이용한 지역난방시스템 가상 운전 분석)

  • Ahn, Jeongjin;Lee, Minkyung;Kim, Laehyun
    • Journal of Energy Engineering
    • /
    • v.28 no.3
    • /
    • pp.18-25
    • /
    • 2019
  • In this study, in order to solve the problem of the program of calculating code input by experienced users in the power generation, the wide area energy network research group developed the local heating operation analysis program EntPLAN, which can be easily used by anyone, including scalability, with domestic technology. Therefore, the Commission intended to compare the heat sources, heat demand, and the results of operation of the combined heat plant (CHP) on the energy network through simulation with the EnetPLAN and the program A on the market. The results showed that the heat and power output on the energy network of the EnetPLAN and A programs were mostly similar in pattern in the simulation results of the heat supply and the operation method of the accumulator. This enabled the application of the simulation for the various operation modes of the cogeneration facilities existing on the energy network. It is expected that EntPLAN, which was developed with domestic technology, will be easily applied in the field in the future and will present efficient operation simulation results.