• Title/Summary/Keyword: Coflow velocity

Search Result 48, Processing Time 0.023 seconds

Characteristics of Lifted Flame in Coflow Jets for Highly Diluted Fuel (동축류 버너에서 질소 희석된 연료의 부상 특성)

  • Won, S.H.;Cha, M.S.;Lee, B.J.;Chung, S.H.
    • 한국연소학회:학술대회논문집
    • /
    • 2000.05a
    • /
    • pp.9-15
    • /
    • 2000
  • Characteristics of lifted flames for highly diluted propane and methane with nitrogen in coflowing air is experimentally investigated. In case of propane, for various fuel mole fractions and jet velocities, three distinctive types of flames are observed; nozzle attached flames, stationary lifted flames, and oscillating lifted flames. When fuel jet velocity is much smaller than coflow velocity, the base of nozzle attached flame has a tribrachial structure unlike usual coflow difusion flames. Based on the balance mechanism of the propagation speed of tribrachial flame with flow velocity, jet velocity is scaled with stoichiometric laminar burning velocity. Results show that there exists two distinctive lifted flame stabilization; stabilization in the developing region and in the developed region of jets depending on initial fuel mole fraction. It has been found that lifted flame can be stabilized for fuel velocity even smaller than stoichiometric laminar burning velocity. This can be attributed to the buoyancy effect and flow visualization supports it. Lifted flames are also observed for methane diluted with nitrogen. The lifted flames only exist in the developing region of jet.

  • PDF

Effect of Coflow Air Velocity on Heat-loss-induced Self-excitation in Laminar Lifted Propane Coflow-Jet Flames Diluted with Nitrogen (질소로 희석된 프로판 동축류 층류 제트 부상화염에서 열손실에 의한 자기진동에 대한 동축류 속도 효과)

  • Lee, Won-June;Yoon, Sung-Hwan;Park, Jeong;Kwon, Oh-Boong;Park, Jong-Ho;Kim, Tae-Hyung
    • Journal of the Korean Society of Combustion
    • /
    • v.17 no.1
    • /
    • pp.48-57
    • /
    • 2012
  • Laminar lifted propane coflow-jet flames diluted with nitrogen were experimentally investigated to determine heat-loss-related self-excitation regimes in the flame stability map and elucidate the individual flame characteristics. There exists a critical lift-off height over which flame-stabilizing effect becomes minor, thereby causing a normal heat-loss-induced self-excitation with O(0.01 Hz). Air-coflowing can suppress the normal heat-loss-induced self-excitation through increase of a Peclet number; meanwhile it can enhance the normal heat-lossinduced self-excitation through reducing fuel concentration gradient and thereby decreasing the reaction rate of trailing diffusion flame. Below the critical lift-off height. the effect of flame stabilization is superior, leading to a coflow-modulated heat-loss-induced self-excitation with O(0.001 Hz). Over the critical lift-off height, the effect of reducing fuel concentration gradient is pronounced, so that the normal heat-loss-induced self-excitation is restored. A newly found prompt self-excitation, observed prior to a heat-loss-induced flame blowout, is discussed. Heat-loss-related self-excitations, obtained laminar lifted propane coflow-jet flames diluted with nitrogen, were characterized by the functional dependency of Strouhal number on related parameters. The critical lift-off height was also reasonably characterized by Peclet number and fuel mole fraction.

An Experimental Study on Liftoff and Reattachment Characteristics in Concentric Burner (프로판 동축류 확산 화염에서 화염 부상과 재부착에 관한 실험적 연구)

  • Park, S.H.;Won, S.H.;Cha, M.S.;Chung, S.H.
    • 한국연소학회:학술대회논문집
    • /
    • 2001.11a
    • /
    • pp.119-124
    • /
    • 2001
  • Propane coflow diffusion flames have been experimentally studied to investigate the liftoff and reattachment characteristics. Flame properties such as velocity and density distribution were measured by LDV and shadowgraphy, respectively. It is shown that as the velocity of coflowing air increases, liftoff velocity decreases nonlinearly in turbulent jets and linearly in laminar jets, while reattachment velocity decreases nonlinearly. Meanwhile, as inner nozzle tip thickness increases, liftoff velocity increases with the reattachment velocity nearly unchanged. Liftoff phenomena in these flames can be categorized into three classes as a function of coflow velocity, such as laminar liftoff, turbulent liftoff, and transient liftoff.

  • PDF

The Characteristic Modes and Structures of Bluff-Body Stabilized Flames in Supersonic Coflow Air

  • Kim, Ji-Ho;Yoon, Young-Bin;Park, Chul-Woung;Hahn, Jae-Won
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.13 no.3
    • /
    • pp.386-397
    • /
    • 2012
  • The stability and structure of bluff-body stabilized hydrogen flames were investigated numerically and experimentally. The velocity of coflowing air was varied from subsonic velocity to a supersonic velocity of Mach 1.8. OH PLIF images and Schlieren images were used for analysis. Flame regimes were used to classify the characteristic flame modes according to the variation of the fuel-air velocity ratio, into jet-like flame, central-jet-dominated flame, and recirculation zone flame. Stability curves were drawn to find the blowout regimes and to show the improvement in flame stability with increasing lip thickness of the fuel tube, which acts as a bluff-body. These curves collapse to a single line when the blowout curves are normalized by the size of the bluff-body. The variation of flame length with the increase in air flow rate was also investigated. In the subsonic coflow condition, the flame length decreased significantly, but in the supersonic coflow condition, the flame length increased slowly and finally reached a near-constant value. This phenomenon is attributed to the air-entrainment of subsonic flow and the compressibility effect of supersonic flow. The closed-tip recirculation zone flames in supersonic coflow had a reacting core in the partially premixed zone, where the fuel jet lost its momentum due to the high-pressure zone and followed the recirculation zone; this behavior resulted in the long characteristic time for the fuel-air mixing.

Non-premixed Hydrogen Flame Structure in Supersonic Coflowing Air Flows

  • Kim, Ji-Ho;Kim, Je-Hung;Yoon, Young-Bin;Park, Chul-Woung;Hahn, Jae-Won
    • Journal of the Korean Society of Combustion
    • /
    • v.7 no.1
    • /
    • pp.1-7
    • /
    • 2002
  • Experiments have been performed to investigate the structure of axisymmetric hydrogen diffusion flame in a supersonic coflow air. The characteristics and structure of supersonic flames are compared with those of subsonic flames as the velocity of coflow air increases from subsonic to supersonic velocity of Mach 1.8. Also, the subsonic and supersonic flow fields are analyzed numerically for the non-reacting conditions and the possible flame contours indicated by fuel mass fraction are compared with the measured OH radical distributions. It is found that the flame structure indicates more like a partially premixed flame as the coflow air velocity is increased from subsonic to supersonic regimes; strong reaction zone indicated by intense OH signal is found at the center, which is different from subsonic flame cases. And it is shown that the fuel jet passes along the recirculation zones behind the bluff-body fuel nozzle resulting in relatively long mixing time. This is believed to be the reason of the partially premixed flame characteristics found in the present supersonic flames.

  • PDF

Experimental Study on the Effect of Velocity gradient on Propagation speed of Ttribrachial flame in Laminar Coflow Jets (삼지화염의 전파속도에 대한 속도구배의 영향에 관한 실험적 연구)

  • Kim, M.K.;Won, S.H.;Chung, S.H.;Fujita, O.
    • 한국연소학회:학술대회논문집
    • /
    • 2005.10a
    • /
    • pp.221-228
    • /
    • 2005
  • The tribrachial flame in laminar coflow jet has been investigated experimentally with unsteady propagating condition. In this experiment, we found that the tribrachial point has an angle of flame surface because the location of tribrachial point is not on the base point of flame but on the inclined surface of flame. This angle of Flame surface at tribrachial point are increasing when the flame is approaching to the nozzle exit. With considering this angle of flame surface, the radial velocity gradient can affect flame propagation speed by increasing flow-stretch effect. The propagation speed of tribrachial flame was calculated with including above stretch effect. The speed decreases with increasing velocity gradient due to the increment of stretch effect.

  • PDF

Effect of Oxygen Enriched Air on the Combustion Characteristics in a Coaxial Non-Premixed Jet ( I ) - Lift-off and Flame Stability - (산소부화공기가 동축 비예혼합 제트의 연소특성에 미치는 영향 (I) - 화염의 부상과 안정성)

  • Kwark, Ji-Hyun;Jeon, Chung-Hwan;Chang, Young-June
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.2
    • /
    • pp.160-166
    • /
    • 2004
  • Combustion using oxygen enriched air is known as a technology which can increase flame stability as well as thermal efficiency due to improving the burning rate. Lift-off, blowout limit and flame length were examined as a function of jet velocity, coflow velocity and OEC(Oxygen Enriched Concentration). Blowout limit of the flame below OEC 25% decreased with increase of coflow velocity, but the limit above OEC 25% increased inversely. Lift-off height decreased with increase of OEC. In particular, lift-off hardly occurred in the condition above OEC 40%. Flame length of the flames above OEC 40% was increased until the blowout occurred. Great flame stability was obtained since lift-off and blowout limit significantly increased with increase of OEC.

Lift-off and Flame Stability of a Coaxial Non-Premixed Jet Using Oxygen Enriched Air (산소부화공기를 이용한 동축 제트화염의 부상과 연소 안정성)

  • Kwark, Ji-Hyun;Jeon, Chung-Hwan;Chang, Young-June
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.326-331
    • /
    • 2003
  • Combustion using oxygen enriched air is known as a technology which can increase flame stability as well as thermal efficiency due to improvement of the burning rate. Lift-off, blowout limit and flame length were examined as a function of jet velocity, coflow velocity and OEC(Oxygen Enriched Concentration). Blowout limit of the flame below OEC 25% decreased with coflow velocity, but the limit above OEC 25% increased inversely. Lift-off height decreased with increase of OEC. Especially lift-off hardly occurred in the condition above OEC 40%. Flame length of the flames above OEC 40% was increased until the blowout occurred. Flame stability became improved since lift-off and blowout limit increased much with increase of OEC.

  • PDF

Experimental Study on the Stability Enhancement of Nonpremixed Flames in Coflow Jets (동축류 제트에서 전기장에 의한 화염 안정성 증진에 대한 실험적 연구)

  • Won, Sang-Hee;Ryu, Seung-Kwan;Chung, Suk-Ho;Cha, Min-Suk
    • 한국연소학회:학술대회논문집
    • /
    • 2007.05a
    • /
    • pp.191-196
    • /
    • 2007
  • The enhancement of flame stability in coflow jets has been investigated experimentally by observing the liftoff behaviors of nonpremixed propane and methane flames in the electric fields. The liftoff or blowoff velocities has been measured in terms of the applied AC voltages and frequency. The experimental results showed that the liftoff velocity could be extended significantly just by applying the high voltage to the central fuel nozzle both for propane and methane. As increasing the applied voltage, the liftoff velocity increases almost linearly with the applied voltage and have its maximum value at certain applied voltage. After that, the liftoff velocity showed decrease with the applied voltage. Through the experimental observation, we found that the liftoff velocity could be correlated well with the applied voltage and frequency in the linearly increasing regime. And after having maximum in the liftoff velocity, it was observed that the liftoff velocity decreases with the applied voltage irrespective of AC frequencies. To visualize the change of flame structure with electric fields, planar laser induced fluorescence technique was adopted, and the enhancement of flame stability has been explained based on the flame structural change in electric fields.

  • PDF

Characteristics of Methane Turbulent Lifted Flames in Coflow Jets with Initial Temperature Variation (초기 온도 변화를 갖는 동축류 제트에서 메탄 난류 부상화염의 특성)

  • Choi, Byung-Chul;Chung, Suk-Ho
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.32 no.12
    • /
    • pp.970-976
    • /
    • 2008
  • Characteristics of methane turbulent non-premixed flame have been studied experimentally in coflow jets with initial temperature variation. The results showed that the premixed flame model and the large-scale mixing model for turbulent flame stabilization were effective for methane fuel considered initial temperature variation. Especially, the premixed flame model has been improved by considering nitrogen dilution for the liftoff height of turbulent lifted flame. In estimating blowout velocity and the liftoff height at blowout with the premixed flame model and the large-scale mixing model, the two turbulent models were excellently correlated by considering the effect of physical properties and buoyancy for the initial temperature variation.