• Title/Summary/Keyword: Coenzyme Q10

Search Result 86, Processing Time 0.031 seconds

Effects of Coenzyme Q10 on the Antioxidant System in Blood and Liver of Laying Hens (산란계에서 Coenzyme Q10 급여가 혈액 및 간 조직의 항산화 작용에 미치는 영향)

  • Moon, Yang-Soo;Jang, In-Surk
    • Korean Journal of Poultry Science
    • /
    • v.49 no.2
    • /
    • pp.115-124
    • /
    • 2022
  • The objective of this study was to investigate the effects of dietary coenzyme Q10 (CoQ10) sources on the antioxidant defense system in the blood and liver of laying hens. Thirty-six 40-wk old Lohmann Brown hens were randomly assigned to three groups based on body weight, with four cages with three layers each. Laying hens were divided into one of the following groups: control (CON), powdered CoQ10 (PCoQ, 100 mg/kg diet), and emulsified CoQ10 (ECoQ, 100 mg/kg diet). All hens were fed a control diet or a control diet supplemented with powdered or emulsified CoQ10 ad libitum for five weeks. There were no differences in body weight, weight gain, and organ weights among the treatment groups, including the liver and spleen. The blood total antioxidant power (TAP) in the ECoQ group increased (P<0.05) by approximately 2-fold compared to that in the CON group. However, there was no significant difference in blood TAP levels between the PCoQ and ECoQ groups, although a decreasing trend (P<0.13) was observed for levels of TAP in the ECoQ group. The mRNA expression and specific activities of superoxide dismutase, glutathione peroxidase, and catalase in the liver were not affected by dietary CoQ10 or type of CoQ10. However, hepatic lipid peroxidation in the ECoQ group was lower (P<0.05) than in the CON group. In conclusion, emulsified CoQ10 increased blood TAP and decreased hepatic lipid peroxidation without affecting antioxidant enzymes, suggesting that emulsified CoQ10 might be more applicable as an active antioxidant supplement than powdered type in laying hens.

Microbial production of coenzyme Q10

  • Suh, Jung-Woo
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 2006.11a
    • /
    • pp.127-130
    • /
    • 2006
  • Coenzyme Q10(CoQ10) is a biological quinine compound that is widely found in living organisms including yeast, plants, and animals. CoQ10 has two major physiological activities:(a)mitochondrial electron-transport activity and (b )antioxidant activity. Various clinical applications are also available: Parkinson's disease, Heart disease, diabetes. Because of its various application filed, the market size of CoQ10 is continuously expanding all over the world. A Japanese company, Nisshin Pharma Inc. is the first industrial producer of CoQ10(1974). CoQ10 can be produced by fermentation and chemical synthesis. In several companies, these two methods are used for the production of CoQ10:chemical synthesis - Yungjin, Daewoong, Nishin Parma; fermentation - Kaneka, Kyowa, Yungjin, etc. Researchs in microbial production of CoQ10 have several steps: screening of producing microorganisms, strain development, fermentation process, purification process, scale-up process, plant production. Several strategies are available for the strain development : Random mutation and screening, directed metabolic engineering. For the optimization of fermentation process, various conditions (nutrient, aeration, temperature, culture type, etc.) are considered. Purification is one of the most important step because the quality of final products entirely depends on its purity. The production cost will be reduced and the quality of the CoQ10 will be impoved by continuous researches in strain development, fermentation process, purification process.

  • PDF

Microbial production of coenzyme Q10

  • Suh, Jung-Woo
    • 한국약용작물학회:학술대회논문집
    • /
    • 2006.11a
    • /
    • pp.127-130
    • /
    • 2006
  • Coenzyme Q10(CoQ10) is a biological quinine compound that is widely found in living organisms including yeast, plants, and animals. CoQ10 has two major physiological activities:(a)mitochondrial electron-transport activity and (b)antioxidant activity. Various clinical applications are also available : Parkinson's disease, Heart disease, diabetes. Because of its various application filed, the market size of CoQ 10 is continuously expanding all over the world. A Japanese company, Nisshin Pharma Inc. is the first industrial producer of CoQ10(1974). CoQ10 can be produced by fermentation and chemical synthesis. In several companies, these two methods are used for the production of CoQ10:chemical synthesis - Yungjin, Daewoong, Nishin Parma; fermentation - Kaneka, Kyowa, Yungjin, etc. Researchs in microbial production of CoQ10 have several steps: screening of producing microorganisms, strain development, fermentation process, purification process, scale-up process, plant production. Several strategies are available for the strain development : Random mutation and screening, directed metabolic engineering. For the optimization of fermentation process, various conditions (nutrient, aeration, temperature, culture type, etc.) are considered. Purification is one of the most important step because the quality of final products entirely depends on its purity. The production cost will be reduced and the quality of the CoQ10 will be impoved by continuous researches in strain development, fermentation process, purification process.

  • PDF

Effects of Coenzyme Q10 on the Expression of Genes involved in Lipid Metabolism in Laying Hens (Coenzyme Q10 첨가 급여가 산란계의 지방대사 연관 유전자 발현에 미치는 영향)

  • Jang, In Surk;Moon, Yang Soo
    • Korean Journal of Poultry Science
    • /
    • v.43 no.1
    • /
    • pp.47-54
    • /
    • 2016
  • The aim of this study was to investigate the expression patterns of key genes involved in lipid metabolism in response to dietary Coenzyme Q10 (CoQ10) in hens. A total of 36 forty week-old Lohmann Brown were randomly allocated into 3 groups consisting of 4 replicates of 3 birds. Laying hens were subjected to one of following treatments: Control (BD, basal diet), T1 (BD+ CoQ10 100 mg/kg diet) and T2 (BD+ micellar of CoQ10 100 mg/kg diet). Birds were fed ad libitum a basal diet or the basal diet supplemented with CoQ10 for 5 weeks. Total RNA was extracted from the liver for quantitative RT-PCR. The mRNA levels of HMG-CoA reductase(HMGCR) and sterol regulatory element-binding proteins(SREBP)2 were decreased more than 30~50% in the liver of birds fed a basal diet supplemented with CoQ10 (p<0.05). These findings suggest that dietary CoQ10 can reduce cholesterol levels by the suppression of the hepatic HMGCR and SREBP2 genes. The gene expressions of liver X receptor (LXR) and SREBP1 were down regulated due to the addition of CoQ10 to the feed (p<0.05). The homeostasis of cholesterol can be regulated by LXR and SREBP1 in cholesterol-low-conditions. The supplement of CoQ10 caused a decreased expression of lipid metabolism-related genes including $PPAR{\gamma}$, XBP1, FASN, and GLUTs in the liver of birds (p<0.05). These data suggest that CoQ10 might be used as a dietary supplement to reduce cholesterol levels and to regulate lipid homeostasis in laying hens.

Optimization of Fermentation Conditions for CoQ10 Production Using Selected Bacterial Strains (CoQ10 생성 세균의 선별 및 발효조건 최적화)

  • Jeong, Keun-Il;Kang, Won-Hwa;Lee, Jung-Ah;Shin, Dong-Ha;Bae, Kyung-Sook;Park, Ho-Young;Park, Hee-Moon
    • Korean Journal of Microbiology
    • /
    • v.46 no.1
    • /
    • pp.46-51
    • /
    • 2010
  • Coenzyme Q10 (CoQ10) is an essential lipid-soluble component of membrane-bound electron transport chains. CoQ10 is involved in several aspects of cellular metabolism and is increasingly being used in therapeutic applications for several diseases. Despite the recent accomplishments in metabolic engineering of Escherichia coli for CoQ10 production, the production levels are not yet competitive with those by fermentation or isolation. So we tested several microorganisms obtained from the KCTC of Biological Resource Center to find novel sources of strain-development for CoQ10-production. Then we selected two strains, Paracoccus denitrificans (KCTC 2530) and Asaia siamensis (KCTC 12914), and tested to optimize the CoQ10 production conditions. Among the carbon sources tested, CoQ10 production was the highest when fructose was supplied about 4% concentration. Yeast extract produced the highest CoQ10 production about 2% concentration. The highest CoQ10 production was obtained at pH 6.0 for P. denitrificans and pH 8.0 for A. siamensis. And two strains showed the highest CoQ10 production at $30^{\circ}C$, but the highest DCW was obtained at $37^{\circ}C$. In the fed-batch culture, P. denitrificans yielded $14.34{\pm}0.473$ mg and A. siamensis yielded $12.53{\pm}0.231$ mg of final CoQ10 production.

The effect of coenzyme Q10 on endothelial function in a young population

  • Petrofsky, Jerrold;Laymon, M.;Lee, H.;Hernandez, E.;Dequine, D.;Thorsen, L.;Lovell, R.;Andrade, J.
    • Physical Therapy Rehabilitation Science
    • /
    • v.1 no.1
    • /
    • pp.6-12
    • /
    • 2012
  • Objective: Coenzyme (CoQ10) is an enzymatic co factor used in normal cellular metabolism. Recent evidence shows that in people with heart disease it can reverse endothelial cell damage in the blood vessels. It is also a potent antioxidant. Design: One group pretest-posttest design. Methods: In the present study, endothelial function was evaluated using the response to occlusion and heat before and 2 weeks after administration of CoQ10, 300 mg/day. Thirty Eight subjects, who are physical therapy students, participated in a series of experiments to see if taking 300 mg of CoQ10 daily for 2 weeks would impact resting blood flow in the forearm skin and the blood flow response to 4 minutes of vascular occlusion and the response to local heat ($42^{\circ}C$) for 6 minutes. Results: The results showed that, for this population, there was no difference in the response to heat. However, the response to occlusion was improved after administration of CoQ10. Conclusions: It would appear that in a young population CoQ10 has no effect on the nitric oxide vasodilator pathway in skin but does influence other vasodilator pathways.

  • PDF

Fermentation Characteristics of Large-scale Coenzyme Q10 Expressing Rhodobacter spharoides in Rumen Simulated Continuous Culture (RSCC) System (Coenzyme Q10 다량 발현 미생물을 이용한 Rumen Simulation Continuous Culture (RSCC) System 반추위 내 미생물 발효 특성에 대한 연구)

  • Bae, G.S.;Yeo, J.M.;Chang, M.B.;Kim, J.N.
    • Journal of Practical Agriculture & Fisheries Research
    • /
    • v.19 no.1
    • /
    • pp.139-151
    • /
    • 2017
  • This study was conducted to confirm the rumen fermentation characteristics of large-scale CoenzymeQ10(CoQ10) producing bacteria R. spharoides in rumen. We conducted in vitro continuous culture test to investigate the characteristics of rumen fermentation with 5% R. spharoides as a direct fed microorganism. A rumen microbial fermentation characteristic has stability at after 12 days for 15 day of experimental period. pH value, NH3-N, microbial protein synthesis, ADF digestibility and NDF digestibility were not shown significantly differences between control and treatment. However, UDP was significantly higher in treatment than control (p<0.05). CoQ10 concentration was 336.0mg/l with 5% R. spharoides. On the other hands, CoQ10 was not detected without R. spharoides. Our study was shown that R. spharoides can produce CoQ10 in rumen environment without harmful effects on rumen fermentation parameter. CoQ10 in rumen may transfer into cow milk through cow metabolism. This strategy might be helpful for producing functional dairy cow milk.

Analytical Method Development for Determination of Coenzyme Q10 by LC-MS/MS in Related Health Functional Foods (건강기능식품에서 LC-MS/MS를 이용한 코엔자임Q10 분석법 연구)

  • Lee, Jin Hee;Oh, Mihyune
    • Journal of Food Hygiene and Safety
    • /
    • v.34 no.6
    • /
    • pp.519-525
    • /
    • 2019
  • The Ministry of Food and Drug Safety (MFDS) is amending its test methods for health functional foods (dietary food supplements) to establish regulatory standards and specifications in Korea. In this regard, we are continuing our research on analytical method development for the items listed in the Korean Health Functional Food Codex. In this study, we have developed a sensitive and selective test method that could simultaneously separate and determine coenzyme Q10 based on liquid chromatographic-tandem mass spectrometry (LC-MS/MS). Calibration curves showed linearity with a correlation coefficient (R2) of > 0.999 and the limits of detection (LODs) and limits of quantitation (LOQs) were in the range of 26.0 ㎍/L and 78.9 ㎍/L, respectively. The recovery results ranged between 98.6-107.0% at 3 different concentration levels with relative standard deviations (RSDs) less than 5%. The proposed analytical method was characterized with high resolution of the coenzyme Q10 and the assay was fully validated as well.