• 제목/요약/키워드: Coefficient of thermal expansion

검색결과 878건 처리시간 0.034초

Inlay wax의 열팽창에 관한 연구 (A study on Thermal expansion of Inlay waxes)

  • 남상용;곽동주;차성수
    • 대한치과기공학회지
    • /
    • 제30권2호
    • /
    • pp.17-22
    • /
    • 2008
  • The purpose of this study was to observe the thermal expansion of the inlay waxes at temperature. Inlay pattern wax shows not only a high coefficient of expansion but also a tendency to warp or distort when allowed to stand unrestrained. The thermal expansion of inlay waxes was tested according to the treatment conditions for 10 minutes at $40^{\circ}C$ The thermal expansion of inlay waxes at various temperatures was measured with an electro dial gauge. The results were as fellows: 1. It is shown that the rate of thermal expansion of wax A is 0.2%, wax B is 0.29%, wax C is 0.38%, and wax D is 0.22% at $40^{\circ}C$ 2. It is shown that the coefficient of thermal expansion of wax A is $106{\times}10^{-6}/^{\circ}C$, wax B is $152{\times}10^{-6}/^{\circ}C$, wax C is $199{\times}10^{-6}/^{\circ}C$, and wax D is $116{\times}10^{-6}/^{\circ}C$ at $40^{\circ}C$ 3. The thermal expansion of the inlay waxes at $40^{\circ}C$ was shown to increase in the order of wax C, B, D, A.

  • PDF

Fe-29%Ni-17%Co 저열팽창성 합금의 기계적 및 열팽창 특성에 미치는 냉간 가공의 영향 (Effect of cold working on the thermal expansion and mechanical properties of Fe-29%-Ni-17%Co low thermal expansion alloy)

  • 이기안;김송이;남궁정;김문철
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2009년도 춘계학술대회 논문집
    • /
    • pp.355-356
    • /
    • 2009
  • The change of thermal expansion and mechanical behaviors by cold working has been investigated in Fe-29%Ni-17%Co low thermal expansion Kovar alloy. Fe-29%Ni-17%Co alloy was cold rolled gradually and prepared to plates having reduction ratio of 0%, 20%, 40%, 60%, and 80%. Annealing effect on the properties was also studied. Thermal expansion was measured from $25^{\circ}C$ to $600^{\circ}C$ with a heating rate of $5^{\circ}C$/min by using vacuum differential dilatometer. It was found that thermal expansion coefficient ($\alpha_{30{\sim}400}$) slightly decreased (reduction ration of 20%) and then remarkably increased (above reduction ration of 40%) with increasing reduction ratio of cold rolling. Thermal expansion coefficient ($\alpha_{30{\sim}400}$) was sharply decreased after annealing heat-treatment. Yield and tensile strengths were continuously increased and elongation was decreased by cold roiling. Microstructural observation and X-ray diffraction analysis results showed that the $\alpha$ phase significantly increased as the reduction ratio increased. The slight decrease of thermal expansion coefficient bellow reduction ration of 20% could be explained by the destroying short-range ordering and the decreasing of grain size. The significant increase of thermal expansion coefficient with cold rolling mainly attributed to the appearance of $\alpha$ phase. The correlation between the microstructural cause and invar phenomena for the low thermal expansion behavior was also discussed.

  • PDF

PVA 용액법을 통한 나노 Cu 분말합성 및 소결체의 열적 특성 (Synthesis of Nano-Sized Cu Powder by PVA Solution Method and Thermal Characteristics of Sintered Cu Powder Compacts)

  • 오복현;마충일;이상진
    • 한국재료학회지
    • /
    • 제30권2호
    • /
    • pp.93-98
    • /
    • 2020
  • Effective control of the heat generated from electronics and semiconductor devices requires a high thermal conductivity and a low thermal expansion coefficient appropriate for devices or modules. A method of reducing the thermal expansion coefficient of Cu has been suggested wherein a ceramic filler having a low thermal expansion coefficient is applied to Cu, which has high thermal conductivity. In this study, using pressureless sintering rather than costly pressure sintering, a polymer solution synthesis method was used to make nano-sized Cu powder for application to Cu matrix with an AlN filler. Due to the low sinterability, the sintered Cu prepared from commercial Cu powder included large pores inside the sintered bodies. A sintered Cu body with Zn, as a liquid phase sintering agent, was prepared by the polymer solution synthesis method for exclusion of pores, which affect thermal conductivity and thermal expansion. The pressureless sintered Cu bodies including Zn showed higher thermal conductivity (180 W/m·K) and lower thermal expansion coefficient (15.8×10-6/℃) than did the monolithic synthesized Cu sintered body.

Thermal Shock Resistance and Thermal Expansion Behavior of $Al_2TiO_5$ Ceramics

  • Kim, Ik-Jin
    • 한국결정성장학회:학술대회논문집
    • /
    • 한국결정성장학회 2000년도 Proceedings of 2000 International Nano Crystals/Ceramics Forum and International Symposium on Intermaterials
    • /
    • pp.179-193
    • /
    • 2000
  • Aluminium titanate (Al₂TiO5) with an excellent thermal shock resistant and a low the expansion coefficient was obtained by solid solution with MgO, SiO₂, and ZrO₂ in the Al₂TiO5 lattice or in the grain boundary solution through electrofusion in an arc furnace. However, these materials have low mechanical strength due to the presence of microcracks developed by a large difference in thermal expansion coefficients along crystallographic axes. Pure Al₂TiO5 tends to decompose into α-Al₂O₃ and TiO₂-rutile in the temperature range of 750-1300℃ that rendered it apparently useless for industrial applications. Several thermal shock tests were performed: Long therm thermal annealing test at 1100℃ for 100h; and water quenching from 950 to room temperature (RT). Cyclic thermal expansion coefficients up to 1500℃ before and after decomposition tests was also measured using a dilatometer, changes in the microstructure, thermal expansion coefficients, Young's modulus and strengths were determined. The role of microcracks in relation to thermal shock resistance and thermal expansion coefficient is discussed.

  • PDF

전부도재관 제작용 침투유리의 열팽창계수의 결정 (The Decision on the Thermal Expansion Coefficient of the Glass Infiltrated in All Ceramic Crown)

  • 김병수;이득용;김학관;장주웅
    • 한국세라믹학회지
    • /
    • 제40권1호
    • /
    • pp.93-97
    • /
    • 2003
  • 치과용 재료를 포함한 생체재료로 각광을 받고 있는 알루미나-유리복합체에 사용되는 유리침투재의 적정 조성은 열팽창계수가 중요 인자로, 적합한 열팽창계수를 가지는 적정 조성 유리 개발을 효율적으로 달성하기 위하여 다구치 실험계획법을 도입하였다. 이러한 방법을 이용하여 유리 침투재의 열팽창에 가장 많은 영향을 미치는 알칼리 산화물과 알칼리 토류 산화물의 영향을 관찰하였다. 치과용 유리침투재의 제성분들을 고려할 때 유리의 열팽창계수에 미치는 영향은 $Na_2$O≫K$_2$O≫MgO≒CaO의 순서로 $Na_2$O의 영향력은 MgO, CaO의 약 8배로 나타났으며 $K_2$O의 영향력은 MgO, CaO의 약 4배로 계산되었다. 또 각 인자간의 교호작용(interaction affects) 중 $K_2$O-CaO의 교호 작용이 가장 유의하게 나타났으며 각 인자와 교호 작용의 수준별 기여율을 계산하여 특성 조성의 열팽창 특성치를 예측하였다.

Thermal Strain Analysis of Composite Materials by Electronic Speckle Pattern Interferometry

  • Kim, Koung-Suk;Jang, Wan-Shik;Hong, Myung-Seak;Kang, Ki-Soo;Jung, Hyun-Chul;Kang, Young-Jun;Yang, Sung-Pil
    • Journal of Mechanical Science and Technology
    • /
    • 제14권5호
    • /
    • pp.477-482
    • /
    • 2000
  • This study discusses a non-contact optical technique (electronic speckle pattern interferometry) that is well suited for thermal deformation measurement without any surface preparation and compensating process. Fiber reinforced plastics ($[0]_{16},\;[0/90]_{8S}$) were analyzed by ESPI to determine their thermal expansion coefficients. The thermal expansion coefficient of the transverse direction of a uniaxial composite is evaluated as $48.78{\times}10^{-6}(1/^{\circ}C)$. Also, the thermal expansion coefficient of the cross-ply laminate $[0/90]_{8S}$ is numerically estimated as $3.23{\times}10^{-6}(1/^{\circ}C)$ that is compared with that measured by ESPI.

  • PDF

열팽창 계수의 2차원 해석 모델에 관한 연구 (Study of 2-Dimensional Model for the Thermal Expansion of Composite Materials)

  • 전형진;유상원
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2005년도 추계학술발표대회 논문집
    • /
    • pp.95-98
    • /
    • 2005
  • This paper proposes the solutions predicting the coefficient of the thermal expansion changes of composites which include the fiber-like shaped ($a_1$ > ($a_2$ = ($a_3$) and the disk-like shaped (al = a2> a3) inclusions like two dimensional geometries, which has one aspect ratios, ${\alpha}$ = ($a_1$ /($a_3$). The analysis follows the procedure developed for elastic moduli by using the generalized approach of Eshelby’s equivalent tensor. The influences of the aspect ratios, on the effective coefficient of thermal expansion of composites containing aligned isotropic inclusions are examined. This model should be limited to analyze the composites with unidirectionally aligned inclusions and with complete binding to each other of both matrix and inclusions having homogeneous properties. The coefficient of thermal expansion of composites (${\theta}_{11}$,${\theta}_{22}$and ${\theta}_{33}$) are investigated. From material data of the composites with glass fiber in epoxy resin, the thermal expansions along the aspect ratio were obtained and similar to the Chow model. The longitudinal coefficients of thermal expansion ${\theta}_{11}$decrease, as the aspect ratios increase. However, the transverse coefficients of thermal expansion ${\theta}_{22}$increase or decrease, as the aspect ratios increase. And both of them decrease, as the concentration increases.

  • PDF

증용량 송전선 강심용 고강도 인바합금에 있어서 탄소 첨가의 영향 (Effects of Carbon Addition in High Strength Invar Alloy for Transmission Line)

  • 김봉서;유경재;이희웅;김병걸
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2000년도 하계학술대회 논문집 C
    • /
    • pp.1599-1601
    • /
    • 2000
  • To study invar alloy as a core material for large ampacity over-head transmission line which have high strength and low thermal expansion coefficient simultaneously, thermal expansion coefficient, physical properties and hardness of Fe-Ni-Co-xC alloy have been studied. It is necessary that invar alloy possess low thermal expansion coefficient and high strength for increased capacity over-head transmission line. In this paper we tried to find out the effect of carbon addition related with mechanical and physical properties. It was found that the thermal expansion coefficient and hardness were increased with carbon addition for whole composition range but the saturation magnetization was decreased except for the range of 0.1$\sim$0.4%C.

  • PDF

인산염유리의 선팽창계수와 유리전이온도의 관계 (Relationship Between Coefficient of Thermal Expansion and Glass Transition Temperature in Phosphate Glasses)

  • 전재삼;차명룡;정병해;김형순
    • 한국세라믹학회지
    • /
    • 제40권11호
    • /
    • pp.1127-1131
    • /
    • 2003
  • 인삼염유리는 전자부품분야에서 저온소성유리로 그 활용범위가 넓은 편이나 높은 열팽창계수로 알칼리 산화물 등을 첨가하여 그 특성을 조정하고 있다. 본 연구에서는 P$_2$O$_{5}$-SnO-ZnO-SiO$_2$/B$_2$O$_3$ 유리계에 대하여 열적특성으로 선팽창계수와 유리전이온도, 용융온도 등을 측정하여 그들 값의 상관관계를 고찰하였다. 이러한 결과는 다른 인삼염 유리와 비교하였을때 선팽창계수와 유리전이온도의 곱이 일정한 값으로 나타나서 이들 중의 하나의 값으로부터 간접적으로 다른 변수를 측정 할 수 있는 한 방법이 될 수 있다.

Properties Analysis for Small Elements Added Shadow Mask Materials

  • Kim, Ku-Hak;Kim, Chung-Ho;Kim, Dong-Soo;Kim, One-Seek
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2002년도 International Meeting on Information Display
    • /
    • pp.1053-1055
    • /
    • 2002
  • Recently CRT is getting large-sized, Flatness and High Fine Pitched in the meantime the raw material for shadow mask is in rapid progress of thinness, Low Thermal Expansion and high strength.Until now we have used AK(Aluminum Killed) & Invar(Fe-Ni alloy) materials for main raw material of shadow mask component. However recently Nb and Co addition and Nb+Co addition, which has advantage of Low Thermal Expansion and High Strength. has been developed as well as applying in mass production as CRT's trend has become more flat and fine pitch. Among of them, Co addition has been mass production as forming type (Flat CRT) with the beneficial effect of low thermal expansion & high strength for the first time. Since then Nb+Co addition has been used in mass production by the request of much higher strength of shadow mask component. In case of Nb addition, It's thermal expansion coefficient is a little lower than normal Invar and a little higher than Co addition, meanwhile Its Mechanical property is almost similar to Co Addition. The used samples of this experiment are 36%Ni + Fe, 32%Ni + 5%Co + Fe, 32%Ni + 5%Co + 0.3%Nb + Fe, 32%Ni + 0.3%Nb + Fe with heat treatment temperature of 600$^{\circ}C$, 650$^{\circ}C$, 700$^{\circ}C$, 750$^{\circ}C$, 800$^{\circ}C$, 850$^{\circ}C$, 900$^{\circ}C$ respectively under the condition of 15min holding time. After heat treatment, we have observed the change of mechanical property with addition of small elements through mechanical property investigation and metal structure observation as well as transition of thermal expansion coefficient by measuring of thermal expansion coefficient at 850$^{\circ}C$. In conclusion, 5%Co addition indicates that its thermal expansion coefficient is very similar under the condition of at 850$^{\circ}C$ for 15min 's heat treatment. From the experimental result it is suggested that Co addition is mostly suitable for Doming property and Nb addition is mostly suitable for Drop property.

  • PDF