• Title/Summary/Keyword: Coefficient diagram method

Search Result 72, Processing Time 0.025 seconds

Design of A Noise Controller for A Linear system using the CDM (CDM 방법을 사용한 선형시스템의 신뢰성 있는 소음제어기 설계)

  • Kim, Jung-Whan;Chung, Tea-Jin;Lee, Sang-Cheol;Jeong, Yang-Woong;Chung, Chan-Soo
    • Proceedings of the KIEE Conference
    • /
    • 1998.07b
    • /
    • pp.455-457
    • /
    • 1998
  • This paper designs a noise controller for the small cavity using Coefficient Diagram Method(CDM). In the small cavity system, there exist nonlinear characteristics such as uncertain-time delay and parameter variation. In the controller design of nonlinear system with uncertainty need to the higher order controller or complexity computation. The coefficient diagram is convenient implementation of the control system design method, that is utilized as a vehicle to collectively express the important features of the system and an improved version Kessler's standard form and the Lipatov stability condition of a constitutes the theoretical basis. Simultaneously, it is provided a desired specification, such as the robustness, the stability, faster response, and lower order controller. A simulation of the system with the proposed controller shows sufficient noise cancelation in small cavity.

  • PDF

A Position control of Ball-Beam using CDM (CDM을 이용한 Ball-Beam 위치제어)

  • 정지연;추연규;임영도
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2002.12a
    • /
    • pp.139-142
    • /
    • 2002
  • 제어 시스템에서 제어기를 설계하는 방법에는 기존 PID 설계 기법인 Ziegler-Nichols와 Jung, R. C. Dorf 방법들이 있다. 본 논문은 Shunji Manabe의 계수도법(CDM Coefficient Diagram Method)을 이용하여 Ball-Beam 시스템을 제어하기 위한 PID 제어기를 설계한다. PID 제어기의 각 파라메터인 P, I, D 계수는 시스템의 속도와 안정성에 기인하는 표준 안정도 지수$(\gamma)$와 등가시정수$(\tau)$ 로부터 얻 어진다. 등가시정수$(\tau)$와 안정도 지수$(\gamma)$는 제어기 파라메터의 대수적 형태와 절대적인 관계가 있다. 그러므로 설계된 제어기로부터 빠른 상승시간과 안정된 정상상태 응답을 얻을 수 있다. Ball-Beam 시스템에 CDM 제어기를 적용한 결과 시스템의 안정도, 정확성 그리고 강인성에 있어서 퍼지 제어기나 PID 제어기에 비해 뛰어난 응답 특성을 확인하였다

Proposal of a Time-dependent Method for Determining the Forming Limit of Sheet Metal (판재의 성형한계 결정을 위한 시간의존적 방법의 제안)

  • Kim, S.G.;Kim, H.J.
    • Transactions of Materials Processing
    • /
    • v.27 no.2
    • /
    • pp.115-122
    • /
    • 2018
  • Most domestic and international standards on the forming limit diagram (FLD) including ISO 12004-2, use a 'position-dependent method,' which determines the forming limit from a strain distribution measured on the specimen after necking or fracture. However, the position-dependent method has inherent problems such as the incidence of asymmetry of a strain distribution, the estimation of missing data near fracture, the termination time of test, and the deformation due to the new stress equilibrium after a fracture, which is blamed for causing sometimes a significant lab-to-lab variation. The 'time-dependent method,' which is anticipated to be a new international standard for evaluating the forming limit, is expected to greatly improve these intrinsic disadvantages of the position-dependent method. It is because the time-dependent method makes it possible to identify and accurately determine the forming limit, just before the necking point from the strain data as continuously measured in a short time interval. In this study, we propose a new time-dependent method based on a Gaussian fitting of strain acceleration with the introduction of 'normalized correlation coefficient.' It has been shown in this study that this method can determine the forming limit very stably and gives a higher value, which is in comparison with the results of the previously studied position-dependent and time-dependent methods.

PDFF Controller Design by CDM for Position Control of Traveling-Wave Ultrasonic Motor

  • Nundrakwang, S.;Isarakorn, D.;Benjanarasuth, T.;Ngamwiwit, J.;Komine, N.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.1847-1852
    • /
    • 2003
  • Ultrasonic motors have many excellent performances. A variety of ultrasonic motors has been developed and used as an actuator in motion control systems. However, this motor has nonlinear characteristics. Therefore, it is difficult to achieve the precise position control system incorporating with the ultrasonic motor. This paper describes a position control scheme for traveling-wave type ultrasonic motor using a pseudo-derivative control with feedforward gains (PDFF) controller designed by the coefficient diagram method (CDM). The PDFF control system satisfies both the tracking and regulation performances, which are the most important for the precise position control system. The CDM is shown to be an efficient and simple method to design the parameters of PDFF controller. The effectiveness of the proposed control system is demonstrated by experiments.

  • PDF

A Study on Wear Life and Mechanisms of TiN Coated Bearing Balls against Steel Disks (TiN 박막 처리될 베어링 볼의 마모 수명 및 메커니즘에 관한 연구)

  • 한지훈;조정우;이영제
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2000.11a
    • /
    • pp.378-384
    • /
    • 2000
  • This paper presents the results of the repeated sliding tests to determine the wear-life of TiN coated AISI 52100 bearing balls deposited by PVD method and to show the wear mechanisms of those. The sliding tests were carried out using a ball-on-disk tribometer under ambient conditions. The coefficient of friction, wear volume and the cycles to failures of TiN coated bearing balls were measured with different normal loads and roughness of lower specimens. On the wear-life diagram, the normal loads and the cycles to failure showed the good linear relation on log-log coordinate. With a decreasing normal load, the diagram showed that the wear-limits, at which the coated bearing balls survived more than 4000cycles were under 0.1N of the normal load.

  • PDF

Construction and Utilization of McCabe-Thiele Diagram for the Solvent Extraction (용매추출에서 McCabe-Thiele도의 작성 및 이용)

  • Lee, Man Seung
    • Resources Recycling
    • /
    • v.27 no.4
    • /
    • pp.65-69
    • /
    • 2018
  • In solvent extraction, extraction isotherm represents the relation between the equilibrium concentration of metal in the aqueous and organic phase. McCabe-Thiele diagram on which extraction isotherm and operating line are constructed provides valuable information on the mass transfer operation. When the equilibrium constant of a solvent extraction reaction is known, the calculation method to obtain extraction isotherm was introduced. Kresmer equation by which the number of extraction stages can be calculated when the distribution coefficient is constant was introduced.

Speed Control of Ultrasonic Motor using PDF Controller Designed by CDM

  • Isarakorn, Don;Benjanarasuth, Taworn;Panaudomsup, Sumit;Ngamwiwit, Jongkol;Komine, Noriyuki
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2002.10a
    • /
    • pp.83.1-83
    • /
    • 2002
  • $\textbullet$ Introduction $\textbullet$ Control System Structure $\textbullet$ Coefficient Diagram Method $\textbullet$ Controller Design $\textbullet$ Experimental Results $\textbullet$ Conclusions

  • PDF

Analysis on Relations between Travel time and Watershed Characteristics (유역특성(流域特性)과 홍수도달시간(洪水到達時間)과의 상관해석(相關解析))

  • Suh, Seung Duk;Lim, Kyu Dong
    • Current Research on Agriculture and Life Sciences
    • /
    • v.5
    • /
    • pp.158-167
    • /
    • 1987
  • The purpose of this study is to inquire and analyse the relation between traveltime (Tc) and watetshed physical characteristics surveyed such as river length (L), Lea, river main slope (s), base length of time area diagram, and storage constant (k). The results obtained in this study are as follows. The average widths of watersheds were with the range from 4.6 kilometers to 16.7 kilometers. The shape factors of main stream ranged from 0.08 to 0.37. The average slopes to main 8tream were within the range of 1.7-5.5 meter per kilometer. The relation between the base length and traveltime from S. C. S. method, Rational method, and RZIHA+KRAVEN method were derived $Tc=0.524{\times}1.35^c$ (r=0.98), $Tc=0.628{\times}1.339^c$, (r=0.98), $Tc=0.667{\times}1.342^c$ (r=0.97). The base length of the time-area diagram (c) for the IUH was derived as $c=0.9(\frac{L.L_{ca}}{\sqrt{s}})^{0.35}$ and correlation coefficient was 0.98 which defined a high significance. The storage constant K, derived in this study was $K=8.32+0.0213{\frac{L}{\sqrt{s}}}$ with correlation coefficient (0.96). The relation between storage Constant and conventional formula were figured out $Tc=0.0003{\times}3.323^k$ (r=0.97). $Tc=0.00045{\times}3.268^k$ (r=0.99) and $Tc=0.0004{\times}3.26^k$ (r=0.963). The base length (c) and storage constant (k) of time-Area Diagram were very important parts that determined traveltime for flood events. In the estimate of travel time for predicting flood volume, the formula of $Tc=0.524{\times}1.35^c$ that would be available to apply the Nak - Dong river watershed area and homogeneous watershed characteristics was found.

  • PDF

Capacity design by developed pole placement structural control

  • Amini, Fereidoun;Karami, Kaveh
    • Structural Engineering and Mechanics
    • /
    • v.39 no.1
    • /
    • pp.147-168
    • /
    • 2011
  • To ensure safety and long term performance, structural control has rapidly matured over the past decade into a viable means of limiting structural responses to strong winds and earthquakes. Nonlinear response history analysis requires rigorous procedure to compute seismic demands. Therefore the simplified nonlinear analysis procedures are useful to determine performance of the structure. In this investigation, application of improved capacity demand diagram method in the control of structural system is presented for the first time. Developed pole assignment method (DPAM) in structural systems control is introduced. Genetic algorithm (GA) is employed as an optimization tool for minimizing a target function that defines values of coefficient matrices providing the placement of actuators and optimal control forces. The ground acceleration is modified under induced control forces. Due to this, performance of structure based on improved nonlinear demand diagram is selected to threshold of nonlinear behavior of structure. With small energy consumption characteristics, semi-active devices are especially attractive solutions for limiting earthquake effects. To illustrate the efficiency of DPAM, a 30-story steel moment frame structure employing the semi-active control devices is applied. In comparison to the widely used linear quadratic regulation (LQR), the DPAM controller was shown to be just as effective and better in the reduction of structural responses during large earthquakes.

Target Polynomial Design for Interval Plant Using Lipatov Theorem and CDM (CDM과 리파토프 정리를 이용한 구간 플랜트의 목적다항식 설계)

  • Oh, Hak-Joon;Chung, Tae-Jin;Lee, Jin-Kyu;Chung, Chan-Soo
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.50 no.1
    • /
    • pp.1-7
    • /
    • 2001
  • For a parametric uncertain system, there are many results on stability analysis, but only a few synthesis methods. In this paper, we proposed a new target polynomial decision method for the parametric uncertain system to stabilize the closed loop system with maximal parametric $l_2$ stability margin. To this, we used both Lipatov Theorem and coefficient diagram method(CDM). To show the effectiveness of the proposed method, we designed a robust controller for the inverted pendulum system with parametric uncertainties using fixed order pole assignment(FOPA) method and its performance was compared with that of the ${\mu}$ synthesis methods.

  • PDF