• Title/Summary/Keyword: Codon usage

Search Result 55, Processing Time 0.025 seconds

Cloning and Prokaryotic Expression of the Mature Fragment of the Chinese Yellow Bovine Myostatin Gene

  • Lu, Wenfa;Zhao, Jing;Wei, Guojian;Shan, Wuesong
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.20 no.6
    • /
    • pp.827-831
    • /
    • 2007
  • Myostatin is a member of the transforming growth factor-${\beta}$(TGF-${\beta}$ super-family. It acts as a negative regulator for skeletal muscle growth. Myostatin mutations are characterized by a visible, generalized increase in muscle mass in double muscled cattle breeds. To understand the biochemistry and physiology of the Chinese Yellow bovine myostatin gene, we report here for the first time expression of the gene in Escherichia coli (E. coli). Primers of the myostatin gene of Chinese Yellow Cattle were designed on the basis of the reported bovine myostatin mRNA sequence (Gen-Bank Accession No. NM005259) and optimized for E. coli codon usage. XhoI and EcoRI restriction enzyme sites were incorporated in the primers, and then cloning vector and expression vector were constructed in a different host bacterium. The expressed protein had a molecule mass of about 16 kDa as determined by SDS-PAGE under reducing conditions. The expressed protein reacted specifically with myostatin monoclonal antibody on immunoblots. Our studies should lead to the investigation of the differences in myostatin genes of various cattle and could benefit human health and food animal agriculture.

Random Sequence Analysis of the Genomic DNA of Methanopyrus kandleri and Molecular Cloning of the Gene Encoding a Homologue of the Catalytic Subunit of Carbon Monoxide Dehydrogenase

  • Shin, Hyun-Seock;Ryu, Jae-Ryeon;Han, Ye-Sun;Choi, Yong-Jin;Yu, Yeon-Gyu
    • Journal of Microbiology and Biotechnology
    • /
    • v.9 no.4
    • /
    • pp.404-413
    • /
    • 1999
  • Methanopyrus kandleri is a hyperthermophilic methanogen that represents one of the most heat-resistant organisms: the maximum growth temperature of M. kandleri is $110^{\circ}C$. A random sequence analysis of the genomic DNA of M. kandleri has been performed to obtain genomic information. More than 200 unique sequence tags were obtained and compared with the sequences in the GenBank and PIR databases. About 30% of the analyzed tags showed strong sequence similarity to previously identified genes involved in various cellular processes such as biosynthesis, transport, methanogenesis, or metabolism. When statistics relating to the frequency of codons were examined, the sequenced open reading frames showed highly biased codon usage and a high content of charged amino acids. Among the identified genes, a homologue of the catalytic subunit of carbon monoxide dehydrogenase (CODH) that reduces $CO_2$ to CO was cloned and sequenced in order to examine its detailed gene structure. The cloned gene includes consensus promoters. The amino acid sequence of the cloned gene shows a strong homology with the CODH genes from methanogenic Archaea, especially in the presumed binding sites for Fe-S centers.

  • PDF

Expression and purification of human mPGES-1 in E. coli and identification of inhibitory compounds from a drug-library

  • Kim, Woo-Il;Choi, Kyung-A;Do , Hyun-Soo;Yu, Yeon-Gyu
    • BMB Reports
    • /
    • v.41 no.11
    • /
    • pp.808-813
    • /
    • 2008
  • Human microsomal prostaglandin E synthase-1 (mPGES-1) is a membrane associated protein that catalyzes the conversion of prostaglandin $H_2$ ($PGH_2$) into prostaglandin $E_2$ ($PGE_2$). In this study, the expression of human mPGES-1 in E. coli was significantly enhanced by modifying the utility of specific codons and the recombinant mPGES-1 was efficiently purified to homogeneity. The $K_m$ and $V_{max}$ of the purified enzyme were determined and the trimeric state characterized by chemical cross-linking with glutaraldehyde. The purified mPGES-1 was used for the screening of a chemical library of bioactive or drug compounds to identify novel inhibitors, and oxacillin and dyphylline were identified as moderately inhibiting mPGES-1 with $I_{C50}$ values of 100 and 200 ${\mu}M$, respectively. As these compounds competitively inhibited the catalysis of $PGH_2$, their binding sites appeared to be located near the $PGH_2$ binding pocket.

Construction and characterization of heterozygous diploid Escherichia coli (2배체 대장균의 제조와 그 특성)

  • Jung, Hyeim;Lim, Dongbin
    • Korean Journal of Microbiology
    • /
    • v.52 no.4
    • /
    • pp.406-414
    • /
    • 2016
  • Among 6 leu codons, CUG is the most frequently used codon in E. coli. It is recognized by leu-tRNA(CAG) encoded by four genes scattered on two chromosomal loci (leuT and leuPQV ). In the process of constructing a strain with no functional leu-tRNA (CAG) gene on chromosome, we made two mutant strains separately, one on leuPQV locus (${\Delta}leuPQV$), and the other on leuT locus [$leuT^*$(GAG)], where the anticodon of leuT was changed from CAG to GAG, thereby altering its recognition codon from CUG to CUC. We attempted to combine these two mutations by transduction using $leuT^*$(GAG) strain as a donor and ${\Delta}leuPQV$ strain as a recipient. Large and small colonies appeared from this transduction. From PCR and DNA sequencing, large colony was confirmed to be the reciprocal recombinant as expected, but the small colonies contained both mutant $leuT^*$(GAG) and wild type leuT (CAG) genes in the cell. This heterozygous diploid strain did not show any unusual morphology under microscopic observation, but, interestingly, it showed a linear growth curve in rich medium with much slower growth rate than wild type cell. It always formed homogenous small colonies in the selection medium, but, when there was no selection, it readily segregated into $leuT^*$(GAG) and leuT (CAG). From these observations, we suggested that the strain with both $leuT^*$(GAG) and leuT (CAG) genes was not a partial diploid (merodiploid), but a full diploid cell having two different chromosomes. We proposed a model explaining how such a heterozygous diploid cell was formed and how and why its growth showed a linear growth curve.

Construction of fat1 Gene Expression Vector and Its Catalysis Efficiency in Bovine Fetal Fibroblast Cells

  • Liu, Boyang;Yang, Runjun;Li, Junya;Zhang, Lupei;Liu, Jing;Lu, Chunyan;Lian, Chuanjiang;Li, Zezhong;Zhang, Yong-Hong;Zhang, Liying;Zhao, Zhihui
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.25 no.5
    • /
    • pp.621-628
    • /
    • 2012
  • The FAT-1 protein is an n-3 fatty acid desaturase, which can recognize a range of 18- and 20-carbon n-6 substrates and transform n-6 polyunsaturated fatty acids (PUFAs) into n-3 PUFAs while n-3 PUFAs have beneficial effect on human health. Fat1 gene is the coding sequence from Caenorhabditis elegans which might play an important role on lipometabolism. To reveal the function of fat1 gene in bovine fetal fibroblast cells and gain the best cell nuclear donor for transgenic bovines, the codon of fat1 sequence was optimized based on the codon usage frequency preference of bovine muscle protein, and directionally cloned into the eukaryotic expression vector pEF-GFP. After identifying by restrictive enzyme digests with AatII/XbaI and sequencing, the fusion plasmid pEF-GFP-fat1 was identified successfully. The pEF-GFP-fat1 vector was transfected into bovine fetal fibroblast cells mediated by Lipofectamine2000$^{TM}$. The positive bovine fetal fibroblast cells were selected by G418 and detected by RT-PCR. The results showed that a 1,234 bp transcription was amplified by reverse transcription PCR and the positive transgenic fat1 cell line was successfully established. Then the expression level of fat1 gene in positive cells was detected using quantitative PCR, and the catalysis efficiency was detected by gas chromatography. The results demonstrated that the catalysis efficiency of fat1 was significantly high, which can improve the total PUFAs rich in EPA, DHA and DPA. Construction and expression of pEF-GFP-fat1 vector should be helpful for further understanding the mechanism of regulation of fat1 in vitro. It could also be the first step in the production of fat1 transgenic cattle.

Construction of Modified Bacillus thuringiensis cry1Ac Genes for Transgenic Crop Through Multi Site-directed Mutagenesis

  • Xu, Hong Guang;Roh, Jong-Yul;Wang, Yong;Choi, Jae-Young;Shim, Hee-Jin;Liu, Qin;Tao, Xueying;Woo, Soo-Dong;Jin, Byung-Rae;Je, Yeon-Ho
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.19 no.1
    • /
    • pp.199-204
    • /
    • 2009
  • The newly cloned Bacillus thuringiensis cry1-5 gene showed high activity to both Plutella xylostella and Spodoptera exigua, while cry1Ac only showed high activity against P. xylostella but low to S. exigua. Through the alignment of amino acid sequences between Cry1Ac and Cry1-5, we found 12 different residues in domain I (6 residues) and domain II (6 residues). In this study, the modified cry1Ac gene, which is constructed according to a crop-preferring codon usage, was used as a template to construct mutant B. thuringiensis cry1Ac genes based on cry1-5 gene through multi site-directed mutagenesis. Total 63 various mutant cry genes were obtained at 12 positions randomly. Among them, ten mutant cry genes, whose domain I was totally converted and domain II was randomly, were selected to express in baculovirus expression system as a polyhedrin fusion form. The recombinant proteins were 95 kDa in size and were stably activated as 65 kDa by trypsin. The expressed mutant Cry proteins were applied to bioassays against P. xylostella and S. exigua. All mutants showed high insecticidal activity both to P. xylostella and S. exigua similar to cry1-5. These results suggest that these mutant cry genes might be expected of desirable cry genes for introduction to transgenic crops.

High-level Production of Recombinant Human IFN-$\alpha2a$ with Co-expression of $tRNA^{Arg(AFF/AGA)}$ in High-cell-density Cultures of Escherichia coli

  • Shin, Chul-Soo;Hong, Min-Seon;Shin, Hang-Chel;Lee, Jeewon
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.6 no.4
    • /
    • pp.301-305
    • /
    • 2001
  • The co-expression of the arg U gene in a double-vector expression system of recombi-nant Escherichia coli BL22(DE3)[pET-IEN2a+pAC-argU] significantly enhanced the production level of reconminant human interferon -$\alpha$2a(rhIFN-$\alpha$2a) in high cell density cultures, compared to a recombinant E. coli culture containing only the single expression vector, pET-IEN2a. The dry cell mass concentration increased to almost 100 g/L, and more than 4 g/L of rhIFN-$\alpha$2a was accumu-lated in the culture broth. Evidently, the synthesis of rhIFN-$\alpha$2a was strongly dependent on the pre-induction growtih rate and more efficient at a higher specific growth rate. The additional sup-ply of tRN $A^{Arg(AGG/AGA)}$ enhanced the expression level of the rhIFN-$\alpha$2a gene in the early stage of the post-induction phase, yet thereafter the specific production rate of rhIFN-$\alpha$2a rapidly de-creased due to severe segregational instability of plasmid vector pET-IEN2a. It would appear that the plasmid instability with only occurred to pET-IEN2a in the double vector system, was re-lated to the effect of translational stress due to the over expression of rhIFN-$\alpha$2a.

  • PDF

Construction of ELISA System for the Detection of Indian citrus ringspot virus (Indian citrus ringspot virus의 ELISA 진단 시스템 구축)

  • Shin, Myeung-Ju;Kwon, Young-Chul;Ro, Hyeon-Su;Lee, Hyun-Sook
    • Research in Plant Disease
    • /
    • v.18 no.3
    • /
    • pp.231-235
    • /
    • 2012
  • Indian citrus ring spot virus (ICRSV) is known to cause a serious disease to citrus, especially to Kinnow mandarin, the popular cultivated citrus species in India. In this study, we developed diagnostic systems based on enzyme-linked immunosorbent assay (ELISA). In order to generate antibodies against ICRSV coat protein, we overexpressed the coat protein in Escherichia coli using the pET15b expression vector containing an optimized ICRSV coat protein gene. The recombinant ICRSV coat protein was overexpressed as soluble form at $37^{\circ}C$ upon IPTG induction. The protein was purified to 95% in purity by Ni-NTA column chromatography. The purified protein was immunized to rabbit for the generation of polyclonal antibody (PAb). The PAb showed a specific immunoreaction to recombinant ICRSV coat protein in western blot analysis and ELISA. Diluted rabbit antisera (10,000 fold) could detect less than 10 ng and 5 ng of the target protein in western blot and ELISA analysis, respectively.

A Genetically Engineered Pseudomonas fluorescens Strain Possesses Dual Activity Against Phytopathogenic Fungi and Insects

  • Lu, Wenwei;Zhang, Weiqiong;Bai, Yan;Fu, Yingying;Chen, Jun;Geng, Xiaolu;Wang, Yujing;Xiao, Ming
    • Journal of Microbiology and Biotechnology
    • /
    • v.20 no.2
    • /
    • pp.281-286
    • /
    • 2010
  • A Pseudomonas fluorescens strain was isolated and found to show antagonistic activity against phytopathogenic fungi and to possess a gene responsible for production of antibiotic 2,4-diacetylphloroglucinol. For the extension of biocontrol range, a gene for an Androetonus australis Hector insect toxin 1 (AaHIT1), one of the most known toxic insect-selective peptides, was designed and synthesized according to the preferred codon usage of Pseudomonas fluorescens, cloned, and transformed into the strain by pSUP106 vector, a broad-host-range plasmid. Bioassays indicated that the engineered strain was able to produce AaHIT1 with insecticidal activity, and at the same time retain the activity against plant pathogen. The experiments for nonplanted soil and rhizosphere colonization showed that, similar to the population of the wild-type strain, that of the engineered strain remained relatively constant in the first 10 days, and the subsequent 50 days, suggesting that AaHIT1 expression in the bacterial cell does not substantially impair its long-term colonization. It is first reported that a Pseudomonas fluorescens strain expressing an active scorpion neurotoxin has dual activity against phytopathogenic fungi and insects, making at attractive for agronomic applications.

Primary Structure of the Human VkII Regions Elicited by Haemophilus influenzae Type b Polysaccharide Vaccines; The J Gene Usage Is Restricted in Child Antibodies Using the A2 Gene

  • Yu, Kang-Yeol;Kim, Jin-Ho;Chung, Gook-Hyun
    • BMB Reports
    • /
    • v.33 no.3
    • /
    • pp.249-255
    • /
    • 2000
  • The Haemophilus influenzae type b (Hib) has been a major cause of bacterial meningitis in children who are less than two years old. The variable (V) region repertoire of adult Caucasian antibodies (Abs) to Hib polysaccharide (PS) has been characterized well. The majority of adult antibodies against Hib uses VL that is derived from the Vk gene A2 and have arginine at the N region. In order to explore the possibility those antibody responses to Hib-PS is variable in various age groups, we examined the VL regions of the antibodies to Hib-PS in Korean adults and children. We immunized Korean adults (n = 8) and children (n = 39) with Hib tetanus conjugated vaccines, isolated RNAs from the peripheral lymphocytes, and amplified the A2-derived VL regions by RT-PCR. The PCR products were subcloned and sequenced. Forty-seven out of 54 independent clones from children used the $J{\kappa}2$, or $J{\kappa}3$ gene in preference. The adults, however, used all of the $J{\kappa}$ genes evenly. With respect to the amino acid sequences of variable regions, adult $A2-J{\kappa}$ recombinants have a germline sequence. But, the 76th codon (AGC) of child $A2-J{\kappa}2$ recombinants was substituted with CGC (arginine) in most cases (88 %) and 77 percent of child clones using the $A2-J{\kappa}3$ genes have isoleucine-109 at the junction of $J{\kappa}-C{\kappa}$ instead of threonine that is found in a germline sequence. These results suggest that the mechanism of antibody production in young children is different from that of adults.

  • PDF