• Title/Summary/Keyword: Codon usage

Search Result 55, Processing Time 0.041 seconds

Comparative Study of the Nucleotide Bias Between the Novel H1N1 and H5N1 Subtypes of Influenza A Viruses Using Bioinformatics Techniques

  • Ahn, In-Sung;Son, Hyeon-Seok
    • Journal of Microbiology and Biotechnology
    • /
    • v.20 no.1
    • /
    • pp.63-70
    • /
    • 2010
  • Novel influenza A (H1N1) is a newly emerged flu virus that was first detected in April 2009. Unlike the avian influenza (H5N1), this virus has been known to be able to spread from human to human directly. Although it is uncertain how severe this novel H1N1 virus will be in terms of human illness, the illness may be more widespread because most people will not have immunity to it. In this study, we compared the codon usage bias between the novel H1N1 influenza A viruses and other viruses such as H1N1 and H5N1 subtypes to investigate the genomic patterns of novel influenza A (H1N1). Totally, 1,675 nucleotide sequences of the hemagglutinin (HA) and neuraminidase (NA) genes of influenza A virus, including H1N1 and H5N1 subtypes occurring from 2004 to 2009, were used. As a result, we found that the novel H1N1 influenza A viruses showed the most close correlations with the swine-origin H1N1 subtypes than other H1N1 viruses, in the result from not only the analysis of nucleotide compositions, but also the phylogenetic analysis. Although the genetic sequences of novel H1N1 subtypes were not exactly the same as the other H1N1 subtypes, the HA and NA genes of novel H1N1s showed very similar codon usage patterns with other H1N1 subtypes, especially with the swine-origin H1N1 influenza A viruses. Our findings strongly suggested that those novel H1N1 viruses seemed to be originated from the swine-host H1N1 viruses in terms of the codon usage patterns.

Comparative Analysis of Nucleotide Sequence and Codon Usage of Arylphorin Gene Cloned from Four Silk-Producing Insects and Their Molicular Phylogenetics

  • Lee, Sang-Mong;Hwang, Jae-Sam;Lee, Jin-Sung;Goo, Tae-Won;Kwon, O-Yu;Kim, Ho-Rak
    • Journal of Life Science
    • /
    • v.9 no.1
    • /
    • pp.84-89
    • /
    • 1999
  • To determine phylogenetic relatedness of four silk-producing silkmoths (B. mori, B. mandarina, A. yamamai and A. pernyi), internal coding region of arylphorin which is a storage protein in hemolymph protein of insects were amplified by polymerase chain reaction and then sequenced and compared each other. The nucleotide composition was biased toward adenine and thymine(59% A+T) and a strong bias for use of C in the third position of codons was found for Phe and Tyr. Together TTC(Phe) and TAC(Tyr) account for about 16.8% (10 for TTC and 8 for TAC) of all codon usage. The nucleotide similarity of arylphorin gene from B. mori showed 99%, 98% and 97% homology with those of B. mandarina, A. yamamai and A. pernyi, respectively. Also, the nucleotide sequence of arylphorin gene from B. mandarina showed 98% and 97% homology with those of A. yamamai and A.pernyi, respectively. Between A. yamamai and A. pernyi, the sequence homology was 97%. The deduced amino acid sequences in B. mori, B. mandarina and A. yamamai showed almost 99% homology. Although the aryphorin gene provided insufficient variability among the four insect species, A UPGMA tree is generated that supported the monophyly of silk-producing insects, with M. sexta placed basal to it. It is suggest that silk-producing insects have a close relationship and a homogeneous genetic background from comparison with those of other insects.

  • PDF

Attenuated Secretion of the Thermostable Xylanase xynB from Pichia pastoris Using Synthesized Sequences Optimized from the Preferred Codon Usage in Yeast

  • Huang, Yuankai;Chen, Yaosheng;Mo, Delin;Cong, Peiqing;He, Zuyong
    • Journal of Microbiology and Biotechnology
    • /
    • v.22 no.3
    • /
    • pp.316-325
    • /
    • 2012
  • Xylanase has been used extensively in the industrial and agricultural fields. However, the low-yield production of xylanase from native species cannot meet the increasing demand of the market. Therefore, improving the heterologous expression of xylanase through basic gene optimization may help to overcome the shortage. In this study, we synthesized a high-GC-content native sequence of the thermostable xylanase gene xynB from Streptomyces olivaceoviridis A1 and, also designed a slightly AT-biased sequence with codons completely optimized to be favorable to Pichia pastoris. The comparison of the sequences' expression efficiencies in P. pastoris X33 was determined through the detection of single-copy-number integrants, which were quantified using qPCR. Surprisingly, the high GC content did not appear to be detrimental to the heterologous expression of xynB in yeast, whereas the optimized sequence, with its extremely skewed codon usage, exhibited more abundant accumulation of synthesized recombinant proteins in the yeast cell, but an approximately 30% reduction of the secretion level, deduced from the enzymatic activity assay. In this study, we developed a more accurate method for comparing the expression levels of individual yeast transformants. Moreover, our results provide a practical example for further investigation of what constitutes a rational design strategy for a heterologously expressed and secreted protein.

Codon usage and bias in mitochondrial genomes of parasitic platyhelminthes

  • Le, Thanh-Hoa;Mcmanus, Donald-Peter;Blair, David
    • Parasites, Hosts and Diseases
    • /
    • v.42 no.4
    • /
    • pp.159-167
    • /
    • 2004
  • Sequences of the complete protein-coding portions of the mitochondrial (mt) genome were analysed for 6 species of cestodes (including hydatid tapeworms and the pork tapeworm) and 5 species of trematodes (blood flukes and liver- and lung-flukes). A near-complete sequence was also available for an additional trematode (the blood fluke Schistosoma malayensis). All of these parasites belong to a large flatworm taxon named the Neodermata. Considerable variation was found in the base composition of the protein-coding genes among these neodermatans. This variation was reflected in statistically-significant differences in numbers of each inferred amino acid between many pairs of species. Both convergence and divergence in nucleotide, and hence amino acid, composition was noted among groups within the Neodermata. Considerable variation in skew (unequal representation of complementary bases on the same strand) was found among the species studied. A pattern is thus emerging of diversity in the mt genome in neodermatans that may cast light on evolution of mt genomes generally.

Codon usage analysis of rice glutelin genes (쌀 저장 단백질 글루텔린 유전자 암호 분석)

  • Shin, Yun-Cheol;Kim, Ju-Kon;Nahm, Baek-Hie
    • Applied Biological Chemistry
    • /
    • v.36 no.6
    • /
    • pp.517-524
    • /
    • 1993
  • To characterize glutelins, the most abundant storage protein in rice, 13 complete coding sequences of glutelin genes from the database were analyzed. According to the phylogenic analysis, these genes could be classified into 5 groups, Group I to V. The degrees of homology were calculated to be in the range of 90 to 60%, but the patterns of hydrophobicity were similar in all the groups. Also, each group was found to have similar amino acid composition with variations in lysine content from 2.5 to 3.6% due to the point mutation of arginine to lysine. The isoelectric points of mature proteins and their basic chains of all the groups showed the value of about 9.0 and 10.0, respectively, while the isoelectric points of acidic chains in these groups showed the distinct value of 6.6, 6.7, 7.2, 8.4 and 7.9. The plot of the fraction of G+C at synonimous site in codons (GC3s) against effective codon numbers suggest no major difference in translational efficiency in the expression of glutelin multigenes.

  • PDF

Production of Biopharmaceuticals in E. coli: Current Scenario and Future Perspectives

  • Baeshen, Mohammed N.;Al-Hejin, Ahmed M.;Bora, Roop S.;Ahmed, Mohamed M. M.;Ramadan, Hassan A. I.;Saini, Kulvinder S.;Baeshen, Nabih A.;Redwan, Elrashdy M.
    • Journal of Microbiology and Biotechnology
    • /
    • v.25 no.7
    • /
    • pp.953-962
    • /
    • 2015
  • Escherichia coli is the most preferred microorganism to express heterologous proteins for therapeutic use, as around 30% of the approved therapeutic proteins are currently being produced using it as a host. Owing to its rapid growth, high yield of the product, costeffectiveness, and easy scale-up process, E. coli is an expression host of choice in the biotechnology industry for large-scale production of proteins, particularly non-glycosylated proteins, for therapeutic use. The availability of various E. coli expression vectors and strains, relatively easy protein folding mechanisms, and bioprocess technologies, makes it very attractive for industrial applications. However, the codon usage in E. coli and the absence of post-translational modifications, such as glycosylation, phosphorylation, and proteolytic processing, limit its use for the production of slightly complex recombinant biopharmaceuticals. Several new technological advancements in the E. coli expression system to meet the biotechnology industry requirements have been made, such as novel engineered strains, genetically modifying E. coli to possess capability to glycosylate heterologous proteins and express complex proteins, including full-length glycosylated antibodies. This review summarizes the recent advancements that may further expand the use of the E. coli expression system to produce more complex and also glycosylated proteins for therapeutic use in the future.

Genetic Transformation of Chlamydomonas reinhardtii with the RNAi Suppressor p19 Gene of Tombus Virus (Tombus 바이러스의 RNAi Suppressor p19 유전자에 의한 Chlamydomonas reinhardtii의 형질전환)

  • Jeong, Won-Joong;Liu, Jang-Ryol;Cerutti, Heriberto
    • Journal of Plant Biotechnology
    • /
    • v.34 no.4
    • /
    • pp.307-312
    • /
    • 2007
  • Chlamydomonas reinhardtii was transformed with the coding sequence of the Tombus virus gene p19 to determine whether the gene functions as an RNAi suppressor in C. reinhardtii. Transformants were confirmed to have 1 to several copies of p19 gene in their chromosomes. When an RNAi strain of C. reinhardtii generated by transforming the inverted repeat (IR) sequence homologous to the 3'UTR region of the MAA7 gene was re-transformed with the gene p19, MAA7 transcript levels of transformants fluctuated and proliferation of trans-formants on the medium containing 5-FI was suppressed. Overall results suggest that p19-mediated silencing suppression works at a low level in C. reinhardtii because of difference in codon usage resulting in weak P19 expression unless p19-mediated silencing suppression in C. reinhardtii works in a different manner from higher plants.

Analysis of a Heterocyst-controlling Gene and Its Expression upon Nitrogen Starvation in a Cyanobacterium (남조류의 이형세포 조절 유전자와 질소량에 따른 유전자 발현의 분석)

  • Bae, Jeong-Jin;Yoon, Ho-Sung
    • Korean Journal of Ecology and Environment
    • /
    • v.38 no.4 s.114
    • /
    • pp.510-517
    • /
    • 2005
  • The filamentous cyanobacterium Anabaena is capable of both photosynthesis and nitrogen fixation which probably facilitated its incredible adaptation and proliferation in freshwater environments. A small gene, patS, was found to block nitrogen fixing cells from developing which resulted in death of Anabaena in the absence of combined nitrogen sources. We analyzed the DNA sequences in the vicinity of the patS gene by using a codon usage program and detected no codon bias other than the patS open reading frame. Three overlapping cosmids that contain the patS gene were identified, and the presence of other known heterocyst-controlling genes was examined. The patS expression in response to nitrogen starvation was analyzed at the level of transcription and translation by using Northern blot analyses and lacZ-reporter-gene fusion experiments, respectively. The patS expression increased rapidly (within 12 hours) upon the removal of combined nitrogen from the media.