• Title/Summary/Keyword: Codon

Search Result 504, Processing Time 0.022 seconds

Primary Structure of the Human VkII Regions Elicited by Haemophilus influenzae Type b Polysaccharide Vaccines; The J Gene Usage Is Restricted in Child Antibodies Using the A2 Gene

  • Yu, Kang-Yeol;Kim, Jin-Ho;Chung, Gook-Hyun
    • BMB Reports
    • /
    • v.33 no.3
    • /
    • pp.249-255
    • /
    • 2000
  • The Haemophilus influenzae type b (Hib) has been a major cause of bacterial meningitis in children who are less than two years old. The variable (V) region repertoire of adult Caucasian antibodies (Abs) to Hib polysaccharide (PS) has been characterized well. The majority of adult antibodies against Hib uses VL that is derived from the Vk gene A2 and have arginine at the N region. In order to explore the possibility those antibody responses to Hib-PS is variable in various age groups, we examined the VL regions of the antibodies to Hib-PS in Korean adults and children. We immunized Korean adults (n = 8) and children (n = 39) with Hib tetanus conjugated vaccines, isolated RNAs from the peripheral lymphocytes, and amplified the A2-derived VL regions by RT-PCR. The PCR products were subcloned and sequenced. Forty-seven out of 54 independent clones from children used the $J{\kappa}2$, or $J{\kappa}3$ gene in preference. The adults, however, used all of the $J{\kappa}$ genes evenly. With respect to the amino acid sequences of variable regions, adult $A2-J{\kappa}$ recombinants have a germline sequence. But, the 76th codon (AGC) of child $A2-J{\kappa}2$ recombinants was substituted with CGC (arginine) in most cases (88 %) and 77 percent of child clones using the $A2-J{\kappa}3$ genes have isoleucine-109 at the junction of $J{\kappa}-C{\kappa}$ instead of threonine that is found in a germline sequence. These results suggest that the mechanism of antibody production in young children is different from that of adults.

  • PDF

Complete Chloroplast DNA Sequence from a Korean Endemic Genus, Megaleranthis saniculifolia, and Its Evolutionary Implications

  • Kim, Young-Kyu;Park, Chong-wook;Kim, Ki-Joong
    • Molecules and Cells
    • /
    • v.27 no.3
    • /
    • pp.365-381
    • /
    • 2009
  • The chloroplast DNA sequences of Megaleranthis saniculifolia, an endemic and monotypic endangered plant species, were completed in this study (GenBank FJ597983). The genome is 159,924 bp in length. It harbors a pair of IR regions consisting of 26,608 bp each. The lengths of the LSC and SSC regions are 88,326 bp and 18,382 bp, respectively. The structural organizations, gene and intron contents, gene orders, AT contents, codon usages, and transcription units of the Megaleranthis chloroplast genome are similar to those of typical land plant cp DNAs. However, the detailed features of Megaleranthis chloroplast genomes are substantially different from that of Ranunculus, which belongs to the same family, the Ranunculaceae. First, the Megaleranthis cp DNA was 4,797 bp longer than that of Ranunculus due to an expanded IR region into the SSC region and duplicated sequence elements in several spacer regions of the Megaleranthis cp genome. Second, the chloroplast genomes of Megaleranthis and Ranunculus evidence 5.6% sequence divergence in the coding regions, 8.9% sequence divergence in the intron regions, and 18.7% sequence divergence in the intergenic spacer regions, respectively. In both the coding and noncoding regions, average nucleotide substitution rates differed markedly, depending on the genome position. Our data strongly implicate the positional effects of the evolutionary modes of chloroplast genes. The genes evidencing higher levels of base substitutions also have higher incidences of indel mutations and low Ka/Ks ratios. A total of 54 simple sequence repeat loci were identified from the Megaleranthis cp genome. The existence of rich cp SSR loci in the Megaleranthis cp genome provides a rare opportunity to study the population genetic structures of this endangered species. Our phylogenetic trees based on the two independent markers, the nuclear ITS and chloroplast MatK sequences, strongly support the inclusion of the Megaleranthis to the Trollius. Therefore, our molecular trees support Ohwi's original treatment of Megaleranthis saniculifolia to Trollius chosenensis Ohwi.

Thr-6Pro missense mutation in human lysosomal acid lipase (LAL) gene in patients with familial hypercholesterolemia in Korea

  • Hwang, Hye-Suk;Hwang, Jung-Hee;Kim, Hyun-Sup;Kim, Nam-Keun;Kim, Se-Jae;Lee, Chung-Choo;Chung, Ki-Wha
    • Journal of Genetic Medicine
    • /
    • v.2 no.2
    • /
    • pp.65-70
    • /
    • 1998
  • Lysosomal acid lipase (LAL) plays a central role in the intracellular degradation of neutral lipids derived from plasma lipoproteins. In this study, we investigated the missense mutation within exon 2 of human LAL gene changing of codon -6 of prepeptide from threonine to proline. The Thr-6Pro mutation was detected by the HaeIII restriction fragment length polymorphism (RFLP) and single-strand conformation polymorphism (SSCP). We analyzed the mutation in subjects with 221 unrelated randomly selected control samples and 86 patients with familial hypercholesterolemia (FH) in Korea. We observed that mutation is present with high frequency in Korea compared to other populations studied previously. The frequency of PP homozygote in the FH group was observed considerably higher than that of control. However, there was no significant difference of genotype frequency between two groups. These results, together with the fact that plasma lipids and lipoproteins levels between genotypes showed no statistical difference, suggest that the Thr-6Pro mutation in the LAL gene may have no association with the increased risk of FH development.

  • PDF

Identification and Characterization of a Conserved Baculoviral Structural Protein ODVP-6E/ODV-E56 from Choristoneura fumiferana Granulovirus

  • Rashidan, Kianoush Khajeh;Nassoury, Nasha;Giannopoulos, Paresa N.;Guertin, Claude
    • BMB Reports
    • /
    • v.35 no.6
    • /
    • pp.595-603
    • /
    • 2002
  • A gene that encodes a homologue to baculoviral ODVP-6E/ODV-E56, a baculoviral envelope-associated viral structural protein, has been identified and sequenced on the genome of Choristoneura fumiferana granulovirus (ChfuGV). The ChfuGV odvp-6e/odv-e56 gene was located on an 11-kb BamHI subgenomic fragment using different sets of degenerated primers, which were designed using the results of the protein sequencing of a major 39 kDa structural protein that is associated with the occlusion-derived virus (ODV). The gene has a 1062 nucleotide (nt) open-reading frame (ORF) that encodes a protein with 353 amino acids with a predicated molecular mass of 38.5 kDa. The amino acid sequence data that was derived from the nucleotide sequence in ChfuGV was compared to those of other baculoviruses. ChfuGV ODVP-6E/ODV-E56, along with othe baculoviral ODVP-6E/ODV-E56 proteins, all contained two putative transmembrane domains at their C-terminus. Several putative N-and O-glycosylation, N-myristoylation, and phosphorylation sites were detected in the ChfuGV ODVP-6E/ODV-E56 protein. A similar pattern was detected when a hydrophobicity-plots comparison was performed on ChfuGV ODVP-6E/ODV-E56 with other baculoviral homologue proteins. At the nucleotide level, a late promoter motif (GTAAG) was located at -14 nt upstream to the start codon of the GhfuGV odvp-6e/odv-e56 gene. a slight variant of the polyadenylation signal, AATAAT, was detected at the position +10 nt that is downstream from the termination signal. A phylogenetic tree for baculoviral ODVP-6E/ODV-E56 was constructed using a maximum parsimony analysis. The phylogenetic estimation demonstrated that ChfuGV ODVP-6E/ODV-E56 is most closely related to those of Cydia pomonella granulovirus (CpGV) and Plutella xylostella granulovirus (PxGV).

Identification and Characterization of a Putative Baculoviral Transcriptional Factor IE-1 from Choristoneura fumiferana Granulovirus

  • Rashidan, Kianoush Khajeh;Nassoury, Nasha;Merzouki, Abderrazzak;Guertin, Claude
    • BMB Reports
    • /
    • v.35 no.6
    • /
    • pp.553-561
    • /
    • 2002
  • A gene that encodes a protein homologue to baculoviral IE-1 was identified and sequenced in the genome of the Choristoneura fumiferana granulovirus (ChfuGV). The gene has an 1278 nucleotide (nt) open-reading frame (ORF) that encodes 426 amino acids with an estimated molecular weight of 50.33 kDa. At the nucleotide level, several cis-acting regulatory elements were detected within the promoter region of the ie-1 gene of ChfuGV along with other studied granuloviruses (GVs). Two putative CCAAT elements were detected within the noncoding leader region of this gene; one was located on the opposite strand at -92 and the other at -420 nt from the putative start triplet. Two baculoviral late promoter motifs (TAAG) were also detected within the promoter region of the ie-1 gene of ChfuGV. A single polyadenylation signal, AATAAA, was located 18nt downstream of the putative translational stop codon of ie-1 from ChfuGV. At the protein level, the amino acid sequence data that was derived from the nucleotide sequence in ChfuGV IE-1 was compared to those of the Cydia pomonella granulovirus (CpGV), Xestia c-nigrum granulovirus (XcGV) and Plutella xylostella granulovirus (PxGV). The C-terminal regions of the granuloviral IE-1 sequences appeared to be more conserved when compared to the N-terminal regions. A domain, similar to the basic helix-loop-helix like (bHLH-like) domain in NPVs, was detected at the C-terminal region of IE-1 from ChfuGV (residues 387 to 414). A phylogenetic tree for baculoviral IE-1 was constructed using a maximum parsimony analysis. A phylogenetic estimation demonstrates that ChfuGV IE-1 is most closely related to that of CpGV.

The ICAM-1 Gly241Arg Polymorphism is Not Associated With Polycystic Ovary Syndrome - Results from a Case Control study in Kashmir, India

  • yousuf, Syed Douhath;Ganie, Mohammad Ashraf;Zargar, Mohammad Afzal;Parvez, Tabasum;Rashid, Fouzia
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.17 no.3
    • /
    • pp.1583-1588
    • /
    • 2016
  • Background: Polycystic ovary syndrome (PCOS) is considered to be a multifactorial disorder resulting from the interaction of several predisposing and protective genetic variants. PCOS is associated with low-grade chronic inflammation. Elevated levels of inflammatory markers including intercellular adhesion molecule-1 (ICAM-1) are demonstrated in women with PCOS. Recent evidence indicates a significant linkage between a locus on chromosome 19p13 and multifactorial diseases that have an inflammatory component. The aim of the study was to assess the possible association of Gly241Arg polymorphism of ICAM-1 gene located on chromosome 19p13 in determining risk of PCOS in Kashmiri women. Materials and Methods: Gly241Arg SNP in DNA from peripheral blood leukocytes of 220 PCOS cases and 220 age matched non-PCOS healthy controls was analysed using allel specific PCR. Results: The genotype and allele frequency distributions of Gly241Arg SNP showed insignificant difference between the PCOS cases and control women, indicating no role of this SNP in PCOS susceptibility. The odds ratio for Arg/Arg genotype was 0.87 (95% CI=0.32-2.3) [P=0.79], for Gly/Arg genotype was 0.98 (95% CI= 0.66-1.47) [P=1] and for Arg/Arg+Gly/Arg genotype was 0.97 (95% CI=0.65-1.45) [P=0.92]. The genotypic frequencies of ICAM-1codon 241 showed statistically insignificant difference between cases and controls (${\chi}^2=0.07$; p=0.96) Nor the studied polymorphism was found to affect clinical and laboratory parameters significantly. Conclusions: Although Gly241Arg polymorphism have not shown significant association with PCOS. Further, specifically designed studies on large cohorts are required to conclusively establish any role of ICAM-1 gene polymorphisms in PCOS in our study.

A Novel Mutant of Human Papillomavirus Type 18 E6E7 Fusion Gene and its Transforming Activity

  • Zhou, Zhi-Xiang;Zhao, Chen;Li, Qian-Qian;Zeng, Yi
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.17
    • /
    • pp.7395-7399
    • /
    • 2014
  • Background: Persistent human papillomavirus (HPV) infection, especially with high-risk types such as HPV16 and HPV18, has been identified as the primary cause of cervical cancer. E6 and E7 are the major onco-proteins of high-risk HPVs, which are consistently expressed in HPV infected tissues but absent in normal tissues and represent ideal therapeutic targets for immunotherapy of cervical cancer. Materials and Methods: In this study, the optimized fusion gene HPV18 E6E7 (HPV18 ofE6E7) was constructed according to genetic codon usage for human genes. At the same time, for safety future clinical application, a mutant of HPV18 ofE6E7 fusion gene was generated by site-directed mutagenesis at L52G for the E6 protein and C98G for the E7 protein. Results: HPV18-E6E7 mutant (HPV18 ofmE6E7) constructed in this work not only lost the transformation capability for NIH 3T3 cells and tumorigenicity in BALB/c nude mice, but also maintained very good stability and antigenicity. Conclusion: These results suggest that the mutant should undergo further study for application as a safe antigenspecific therapeutic vaccine for HPV18-associated tumors.

A Novel Heterozygous Mutation (F252Y) in Exon 7 of the IRF6 Gene is Associated with Oral Squamous Cell Carcinomas

  • Melath, Anil;Santhakumar, Gopi Krishnan;Madhavannair, Shyam Sunder;Nedumgottil, Binoy Mathews;Ramanathan, Arvind
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.11
    • /
    • pp.6803-6806
    • /
    • 2013
  • Background: Interferon regulatory factor 6 (IRF6) is a transcription factor with distinct and conserved DNA and protein binding domains. Mutations within the protein binding domain have been significantly observed in subjects with orofacial cleft relative to healthy controls. In addition, recent studies have identified loss of expression of IRF6 due to promoter hypermethylation in cutaneous squamous cell carcinomas. Since mutational events occurring within the conserved domains are likely to affect the function of a protein, we investigated whether regions within the IRF6 gene that encodes for the conserved protein binding domain carried mutations in oral squamous cell carcinoma (OSCC). Materials and Methods: Total chromosomal DNA extracted from 32 post surgical OSCC tissue samples were amplified using intronic primers flanking the exon 7 of IRF6 gene, which encodes for the major region of protein binding domain. The PCR amplicons from all the samples were subsequently resolved in a 1.2% agarose gel, purified and subjected to direct sequencing to screen for mutations. Results: Sequencing analysis resulted in the identification of a mutation within exon 7 of IRF6 that occurred in heterozygous condition in 9% (3/32) of OSCC samples. The wild type codon TTC at position 252 coding for phenylalanine was found to be mutated to TAC that coded for tyrosine (F252Y). Conclusions: The present study identified for the first time a novel mutation within the conserved protein binding domain of IRF6 gene in tissue samples of subjects with OSCC.

The Complete Nucleotide Sequence of a Korean Isolate Bean yellow mosaic virus from Freesia sp. and Comparison to Other Potyviruses

  • Choi, Sun-Hee;Yoon, Ju-Yeon;Ryu, Ki-Hyun;Choi, Seung-Kook
    • Research in Plant Disease
    • /
    • v.19 no.2
    • /
    • pp.77-83
    • /
    • 2013
  • Bean yellow mosaic virus (BYMV; genus Potyvirus, family Potyviridae) causes severe losses to various legume species and a number of non-legume species, particularly freesia plants. In a survey of virus diseases in Gyeonggi province, Korea, BYMV isolates were identified from many cultivated freesia species. Here, we determined the complete nucleotide sequences of a BYMV freesia isolate (BYMV-Fr; accession number FJ492961). BYMV-Fr genome consists of 9,545 nucleotides (nt) excluding the poly (A) tail and encodes 3,057 amino acid (aa), with an AUG start and UAG stop codon, containing one open reading frame typical of a potyvirus polyprotein. The polyprotein of BYMV-Fr was divided to ten proteins and the cleavage sites of each protein were determined. The coat protein (CP) and polyprotein of BYMV-Fr were compared at the aa level with those of the previously reported 4 BYMV isolates. BYMV-Fr shared 90.1 to 97.1 and 91.0 to 92.5% at the CP and polyprotein homology. Interestingly, BYMV-Fr showed identities of a lower level at the nt level of 5' noncoding region (61.4 to 67.6%) and at the aa level of P1 (71.4 to 72.8%), comparing with four BYMV isolates. Based on the aa sequence diversity of CP and polyprotein, phylogenetic analysis with the four BYMV isolates showed two distinct groups and BYMV-Fr and most BYMV isolates were most closely related to the clover yellow vein virus among 52 potyviruses. To our knowledge, this is the first report of the complete genome sequence of BYMV freesia strain.

Patterns of rpoC Mutations in Drug-Resistant Mycobacterium tuberculosis Isolated from Patients in South Korea

  • Yun, Yeo Jun;Lee, Jong Seok;Yoo, Je Chul;Cho, Eunjin;Park, Dahee;Kook, Yoon-Hoh;Lee, Keun Hwa
    • Tuberculosis and Respiratory Diseases
    • /
    • v.81 no.3
    • /
    • pp.222-227
    • /
    • 2018
  • Background: Rifampicin (RFP) is one of the principal first-line drugs used in combination chemotherapies against Mycobacterium tuberculosis, and its use has greatly shortened the duration of chemotherapy for the successful treatment of drug-susceptible tuberculosis. Compensatory mutations have been identified in rpoC that restore the fitness of RFP-resistant M. tuberculosis strains with mutations in rpoB. To investigate rpoC mutation patterns, we analyzed 93 clinical M. tuberculosis isolates from patients in South Korea. Methods: Drug-resistant mycobacterial isolates were cultured to determine their susceptibility to anti-tubercular agents. Mutations in rpoC were identified by sequencing and compared with the relevant wild-type DNA sequence. Results: In total, 93 M. tuberculosis clinical isolates were successfully cultured and tested for drug susceptibilities. They included 75 drug-resistant tuberculosis species, of which 66 were RFP-resistant strains. rpoC mutations were found in 24 of the 66 RFP-resistant isolates (36.4%). Fifteen different types of mutations, including single mutations (22/24, 91.7%) and multiple mutations (2/24, 8.3%), were identified, and 12 of these mutations are reported for the first time in this study. The most frequent mutation involved a substitution at codon 452 (nt 1356) resulting in amino acid change F452L. Conclusion: Fifteen different types of mutations were identified and were predominantly single-nucleotide substitutions (91.7%). Mutations were found only in dual isoniazid- and RFP-resistant isolates of M. tuberculosis. No mutations were identified in any of the drug-susceptible strains.