• 제목/요약/키워드: Coding Technologies

검색결과 139건 처리시간 0.029초

A Study on the Current State of Artificial Intelligence Based Coding Technologies and the Direction of Future Coding Education

  • Jung, Hye-Wuk
    • International Journal of Advanced Culture Technology
    • /
    • 제8권3호
    • /
    • pp.186-191
    • /
    • 2020
  • Artificial Intelligence (AI) technology is used in a variety of fields because it can make inferences and plans through learning processes. In the field of coding technologies, AI has been introduced as a tool for personalized and customized education to provide new educational environments. Also, it can be used as a virtual assistant in coding operations for easier and more efficient coding. Currently, as coding education becomes mandatory around the world, students' interest in programming is heightened. The purpose of coding education is to develop the ability to solve problems and fuse different academic fields through computational thinking and creative thinking to cultivate talented persons who can adapt well to the Fourth Industrial Revolution era. However, new non-computer science major students who take software-related subjects as compulsory liberal arts subjects at university came to experience many difficulties in these subjects, which they are experiencing for the first time. AI based coding technologies can be used to solve their difficulties and to increase the learning effect of non-computer majors who come across software for the first time. Therefore, this study examines the current state of AI based coding technologies and suggests the direction of future coding education.

Fast Quadtree Structure Decision for HEVC Intra Coding Using Histogram Statistics

  • Li, Yuchen;Liu, Yitong;Yang, Hongwen;Yang, Dacheng
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제9권5호
    • /
    • pp.1825-1839
    • /
    • 2015
  • The final draft of the latest video coding standard, High Efficiency Video Coding (HEVC), was approved in January 2013. The coding efficiency of HEVC surpasses its predecessor, H.264/MPEG-4 Advanced Video Coding (AVC), by using only half of the bitrate to encode the same sequence with similar quality. However, the complexity of HEVC is sharply increased compared to H.264/AVC. In this paper, a method is proposed to decrease the complexity of intra coding in HEVC. Early pruning and an early splitting strategy are applied to the quadtree structure of coding tree units (CTU) and residual quadtree (RQT). According to our experiment, when our method is applied to sequences from Class A to Class E, the coding time is decreased by 44% at the cost of a 1.08% Bjontegaard delta rate (BD-rate) increase on average.

A Review on Motion Estimation and Compensation for Versatile Video Coding Technology (VVC)

  • Choi, Young-Ju;Kim, Byung-Gyu
    • 한국멀티미디어학회논문지
    • /
    • 제22권7호
    • /
    • pp.770-779
    • /
    • 2019
  • Video coding technologies are progressively becoming more efficient and complex. The Versatile Video Coding (VVC) is a new state-of-the art video compression standard that is going to be a standard, as the next generation of High Efficiency Video Coding (HEVC) standard. To explore the future video coding technologies beyond the HEVC, numerous efficient methods have been adopted by the Joint Video Exploration Team (JVET). Since then, the next generation video coding standard named as VVC and its software model called VVC Test Model (VTM) have emerged. In this paper, several important coding features for motion estimation and motion compensation in the VVC standard is introduced and analyzed in terms of the performance. Improved coding tools introduced for ME and MC in VVC, can achieve much better and good balance between coding efficiency and coding complexity compared with the HEVC.

Neural Network based Video Coding in JVET

  • Choi, Kiho
    • 방송공학회논문지
    • /
    • 제27권7호
    • /
    • pp.1021-1033
    • /
    • 2022
  • After the Versatile Video Coding (VVC)/H.266 standard was completed, the Joint Video Exploration Team (JVET) began to investigate new technologies that could significantly increase coding gain for the next generation video coding standard. One direction is to investigate signal processing based tools, while the other is to investigate Neural Network based technology. Neural Network based Video Coding (NNVC) has not been studied previously, and this is the first trial of such an approach in the standard group. After two years of research, JVET produced the first common software called Neural Compression Software (NCS) with two NN-based in-loop filtering tools at the 27th meeting and began to maintain NN-based technologies for the common experiment. The coding performances of the two filters in NCS-1.0 are shown to be 8.71% and 9.44% on average in a random access scenario, respectively. All the material related to NCS can be found in the repository of the JVET. In this paper, we provide a brief overview and review of the NNVC activity studied in JVET in order to provide trend and insight for the new direction of video coding standard.

ETRI AI 실행전략 3: 네트워크 및 미디어·콘텐츠 미래기술 선도 (ETRI AI Strategy #3: Leading Future Technologies of Network, Media, and Content)

  • 김성민;연승준
    • 전자통신동향분석
    • /
    • 제35권7호
    • /
    • pp.23-35
    • /
    • 2020
  • In this paper, we introduce ETRI AI Strategy #3, "Leading Future Technologies of Network, Media, and Content." Its first goal is "to innovate AI service technology to overcome the current limitations of AI technologies." Artificial intelligence (AI) services, such as self-driving cars and robots, are combinations of computing, network, AI algorithms, and other technologies. To develop AI services, we need to develop different types of network, media coding, and content creation technologies. Moreover, AI technologies are adopted in ICT technologies. Self-planning and self-managing networks and automatic content creation technologies using AI are being developed. This paper introduces the two directions of ETRI's ICT technology development plan for AI: ICT for AI and ICT by AI. The area of ICT for AI has only recently begun to develop. ETRI, the ICT leader, hopes to have opportunities for leadership in the second wave of AI services.

Adaptive block tree structure for video coding

  • Baek, Aram;Gwon, Daehyeok;Son, Sohee;Lee, Jinho;Kang, Jung-Won;Kim, Hui Yong;Choi, Haechul
    • ETRI Journal
    • /
    • 제43권2호
    • /
    • pp.313-323
    • /
    • 2021
  • The Joint Video Exploration Team (JVET) has studied future video coding (FVC) technologies with a potential compression capacity that significantly exceeds that of the high-efficiency video coding (HEVC) standard. The joint exploration test model (JEM), a common platform for the exploration of FVC technologies in the JVET, employs quadtree plus binary tree block partitioning, which enhances the flexibility of coding unit partitioning. Despite significant improvement in coding efficiency for chrominance achieved by separating luminance and chrominance tree structures in I slices, this approach has intrinsic drawbacks that result in the redundancy of block partitioning data. In this paper, an adaptive tree structure correlating luminance and chrominance of single and dual trees is presented. Our proposed method resulted in an average reduction of -0.24% in the Y Bjontegaard Delta rate relative to the intracoding of JEM 6.0 common test conditions.

차세대 비디오 부호화 실험모델(JEM)의 화면내 예측 모드 부호화 기법 (A Method of Intra Mode Coding for Joint Exploration Model (JEM))

  • 박도현;이진호;강정원;김재곤
    • 방송공학회논문지
    • /
    • 제23권4호
    • /
    • pp.495-502
    • /
    • 2018
  • HEVC(High Efficiency Video Coding) 보다 뛰어난 압축 성능을 갖는 차세대 비디오 부호화 표준 후보 기술에 대한 탐색과 검증을 진행한 JVET(Joint Video Exploration Team)은 기술 검증을 위한 참조 SW 코덱인 JEM(Joint Exploration Model)을 공개하였다. JEM은 HEVC의 35개 보다 증가한 67개의 화면내 예측 모드를 사용하고 있으며, 이에 따른 예측 모드 부호화에 대한 부담으로 부호화 성능 개선에 제한이 따른다. 본 논문에서는 화면내 예측 모드의 선택 확률을 분석하고, 이를 바탕으로 보다 효율적인 화면내 예측 모드 부호화 기법과 그 기법의 효율적인 엔트로피 부호화를 위한 문맥 모델링 기법을 제안한다. 실험결과 제안 기법은 AI(All Intra) 부호화 구조에서 JEM 7.0 대비 0.02%의 BD-rate 이득을 보였으며, 향후 추가적인 성능 향상을 위한 문맥 모델링 최적화에 대한 연구가 필요하다.

Low-Complexity MPEG-4 Shape Encoding towards Realtime Object-Based Applications

  • Jang, Euee-Seon
    • ETRI Journal
    • /
    • 제26권2호
    • /
    • pp.122-135
    • /
    • 2004
  • Although frame-based MPEG-4 video services have been successfully deployed since 2000, MPEG-4 video coding is now facing great competition in becoming a dominant player in the market. Object-based coding is one of the key functionalities of MPEG-4 video coding. Real-time object-based video encoding is also important for multimedia broadcasting for the near future. Object-based video services using MPEG-4 have not yet made a successful debut due to several reasons. One of the critical problems is the coding complexity of object-based video coding over frame-based video coding. Since a video object is described with an arbitrary shape, the bitstream contains not only motion and texture data but also shape data. This has introduced additional complexity to the decoder side as well as to the encoder side. In this paper, we have analyzed the current MPEG-4 video encoding tools and proposed efficient coding technologies that reduce the complexity of the encoder. Using the proposed coding schemes, we have obtained a 56 percent reduction in shape-coding complexity over the MPEG-4 video reference software (Microsoft version, 2000 edition).

  • PDF

Binaural Cue Coding 기술을 이용한 오디오 코덱 구현 (The Development of audio codec using binaural cue coding technologies)

  • 서정일;강경옥;이병화;한민수
    • 한국음향학회:학술대회논문집
    • /
    • 한국음향학회 2004년도 춘계학술발표대회 논문집 제23권 1호
    • /
    • pp.137-140
    • /
    • 2004
  • 낮은 대역폭에서 다채널 다객체 오디오 신호를 전송하기위해 새롭게 제안된 Spatial Audio Coding 기술은 멀티채널 오디오 신호를 다운믹싱하고 나머지 채널은 음향공간상의 위치정보를 나타내는 파라미터들로 압축하여 표현하는 파라메트릭 압축 방식이다. 본 논문에서는 Spatial Audio Coding 기술중의 하나인 BCC 기술을 이용하여 스테레오 오디오 코덱을 구현하고, 주관듣기평가 실험을 통하여 AAC와 비슷한 성능을 나타내면서도 높은 압축율을 얻을 수 있음을 확인하였다.

  • PDF

3D-HEVC 비디오 부호화 성능 분석 (Performance Analysis of 3D-HEVC Video Coding)

  • 박대민;최해철
    • 방송공학회논문지
    • /
    • 제19권5호
    • /
    • pp.713-725
    • /
    • 2014
  • 차세대 영상 기술의 하나로 다양한 분야에서 주목받고 있는 고품질 다시점 및 3차원 콘텐츠들에 대한 비디오 부호화 기술의 연구 및 표준화가 활발히 진행되고 있다. 다시점 및 3차원 비디오 기술은 복수의 시점을 이용하여 사용자에게 실감나는 영상을 제공할 수 있다. 하지만, 많은 시점을 획득 및 전송하는 것은 한계가 있으므로, 소수의 시점을 이용하여 다양한 시점을 제공하는 연구가 주를 이룬다. 이러한 연구에는 전송 시점을 줄이는 대신 깊이 정보를 전송하여 전송된 시점으로부터 더욱 정확히 임의 시점을 생성하는 기술과 시점간 정보 중복성을 제거하기 위한 부호화 기술이 있다. 최근 국제 표준화 기구인 JCT-3V(Joint Collaborative Team on 3D Video Coding Extension Development)에서는 다시점 및 3차원 비디오 영상을 효율적으로 부호화할 수 있는 기술에 대하여 표준화가 진행되고 있다. 본 논문은 현재 JCT-3V에서 HEVC(High Efficiency Video Coding) 기반으로 표준화가 진행 중인 3D-HEVC 부호화 기술에 대해 살펴보고 그 부호화 및 복잡도 성능을 분석하였다. 이러한 성능 분석은 향후 부호화 성능 향상을 위한 알고리즘 개발 및 고속 부호화기 개발을 위한 부호화 툴의 선별 및 조정에 유용할 것으로 판단된다.