• Title/Summary/Keyword: Codex alimentarius

Search Result 53, Processing Time 0.027 seconds

Development and Validation of a Simultaneous Analytical Method for 5 Residual Pesticides in Agricultural Products using GC-MS/MS (GC-MS/MS를 이용한 농산물 중 잔류농약 5종 동시시험법 개발 및 검증)

  • Park, Eun-Ji;Kim, Nam Young;Shim, Jae-Han;Lee, Jung Mi;Jung, Yong Hyun;Oh, Jae-Ho
    • Journal of Food Hygiene and Safety
    • /
    • v.36 no.3
    • /
    • pp.228-238
    • /
    • 2021
  • The aim of this research was to develop a rapid and easy multi-residue method for determining dimethipin, omethoate, dimethipin, chlorfenvinphos and azinphos-methyl in agricultural products (hulled rice, potato, soybean, mandarin and green pepper). Samples were prepared using QuEChERS (Quick, Easy, Cheap, Effective, Rugged and Safe) and analyzed using gas chromatography-tandem mass spectrometry (GC-MS/MS). Residual pesticides were extracted with 1% acetic acid in acetonitrile followed by addition of anhydrous magnesium sulfate (MgSO4) and anhydrous sodium acetate. The extracts were cleaned up using MgSO4, primary secondary amine (PSA) and octadecyl (C18). The linearity of the calibration curves, which waas excellent by matrix-matched standards, ranged from 0.005 mg/kg to 0.3 mg/kg and yielded the coefficients of determination (R2) ≥ 0.9934 for all analytes. Average recoveries spiked at three levels (0.01, 0.1, 0.5 mg/kg) and were in the range of 74.2-119.3%, while standard deviation values were less than 14.6%, which is below the Codex guideline (CODEX CAC/GL 40).

Improvement of an Analytical Method for Methoprene in Livestock Products using LC-MS/MS (LC-MS/MS를 이용한 축산물 중 살충제 메토프렌의 잔류분석법 개선)

  • Park, Eun-Ji;Kim, Nam Young;Park, So-Ra;Lee, Jung Mi;Jung, Yong Hyun;Yoon, Hae Jung
    • Journal of Food Hygiene and Safety
    • /
    • v.37 no.3
    • /
    • pp.136-142
    • /
    • 2022
  • The research aims to develop a rapid and easy analytical method for methoprene using liquid chromatography-tandem mass spectrometry (LC-MS/MS). A simple, highly sensitive, and specific analytical method for the determination of methoprene in livestock products (beef, pork, chicken, milk, eggs, and fat) was developed. Methoprene was effectively extracted with 1% acetic acid in acetonitrile and acetone (1:1), followed by the addition of anhydrous magnesium sulfate (MgSO4) and anhydrous sodium acetate. Subsequently, the lipids in the livestock sample were extracted by freezing them at -20℃. The extracts were cleaned using MgSO4, primary secondary amine (PSA), and octadecyl (C18), which were then centrifuged to separate the supernatant. Nitrogen gas was used to evaporate the supernatant, which was then dissolved in methanol. The matrix-matched calibration curves were constructed using 8 levels (1, 2.5, 5, 10, 25, 50, 100, 150 ng/mL) and the coefficient of determination (R2) was above 0.9964. Average recoveries spiked at three levels (0.01, 0.1, and 0.5 mg/kg), and ranged from 79.5-105.1%, with relative standard deviations (RSDs) smaller than 14.2%, as required by the Codex guideline (CODEX CAC/GL 40). This study could be useful for residue safety management in livestock products.

Development and Validation of an Analytical Method for Flutianil Residue Identification Using Gas Chromatography-Electron Capture Detection (GC-ECD를 이용한 flutianil 잔류량 분석법 개발 및 확인)

  • Kwon, Ji-Eun;Do, Jung-Ah;Park, Hyejin;Lee, Ji-Young;Cho, Yoon-Jae;Oh, Jae-Ho;Rhee, Gyu-Seek;Lee, Sang-Jae;Chang, Moon-Ik
    • Korean Journal of Food Science and Technology
    • /
    • v.46 no.1
    • /
    • pp.7-12
    • /
    • 2014
  • A sensitive and simple analytical method to identify flutianil residues in agricultural commodities was developed and validated using gas chromatography-electron capture detection (GC-ECD) and mass spectrometry (GC-MS). The flutianil residues were extracted with acetonitrile, partitioned with dichloromethane, and then purified using a silica solid-phase extraction (SPE) cartridge. The method was validated using pepper, sweet pepper, mandarin, hulled rice, soybean, and potato spiked with 0.02 or 0.2 mg/kg flutianil. The average recovery of flutianil was 76.5-108.0% with a relative standard deviation of less than 10%. The limit of detection and limit of quantification were 0.004 and 0.02 mg/kg, respectively. The result of recoveries and relative standard deviation were in line with Codex Alimentarius Commission Guidelines (CAC/GL 40). These results show that the method developed in this study is appropriate for flutianil identification and can be used to maintain the safety of agricultural products containing flutianil residues.

Management of Veterinary Drug Residues in Food (식품 중 잔류동물용의약품의 안전관리)

  • Oh, Jae-Ho;Kwon, Chan-Hyeok;Jeon, Jong-Sup;Choi, Dong-Mi
    • Korean Journal of Environmental Agriculture
    • /
    • v.28 no.3
    • /
    • pp.310-325
    • /
    • 2009
  • Veterinary drugs have been used to prevent livestock diseases for many years. In spite of having advantages, sometimes indiscriminate application, overdose and abuse may cause risk for human. Therefore, management and risk assessment of veterinary drugs become essential to ensure food safety. So the National Veterinary Research & Quarantine Service (NVRQS) impose on registration for use of veterinary drugs also Korea Food and Drug Administration (KFDA) fixed the maximum residue limits (MRLs) for veterinary drugs in food. Basically, KFDA set MRLs based on the veterinary drugs residual data. Moreover, KFDA estimates the theoretical maximum daily intake (TMDI) with food consumption data and population mean body weight. Recently, 116 veterinary drug MRLs including banned veterinary drugs have been established and other 32 veterinary drugs MRLs will be established within 2009. In 2010, MRLs among antibiotics and synthetic antibacterial agents in livestock fishery products (including milk and eggs) and honey (including royal jelly and propolis) which have not been set in Korea Food Code and Codex Alimentarius Commission (CAC) will be regulated as uniform limit (0.03 mg/kg). In future, veterinary drugs will be controlled strictly to strengthen public health by improving analytical method.

Study on international accreditation for residue analysis laboratory (잔류물질분석의 국제공인시험기관 인정 관련 고찰)

  • Kim, MeeKyung;cho, Byung-Hoon;Kim, Dong-Gyu;Yun, Seon Jong;Lim, Chae-Mi;Park, Su-Jeong;Kim, Heuijin;Kim, Yeon Hee;Kim, Soo-Yeon;Yun, So Mi;Kwon, Jin-Wook;Son, Seong-Wan;Chung, Gab-Soo;Lee, Joo-Ho;Kang, Mun-Il
    • Korean Journal of Veterinary Research
    • /
    • v.46 no.4
    • /
    • pp.295-304
    • /
    • 2006
  • Residual materials such as veterinary drugs, environmental contaminants, and pesticides are affecting food safety. High resolution techniques and quality controls are needed to analyze these materials from part per million to part per trillion quantities in food. In order to achieve quality results, standardized methods and techniques are required. Our laboratories were prepared to obtain a certificate of accreditation for ISO/IEC 17025 in the analytical criteria of animal drugs, dioxins, pesticides, and heavy metals. ISO together with IEC has built a strategic partnership with the World Trade Organization with the common goal of promoting a free and fair global trading system. ISO collaborates with the United Nations Organization and its specialized agencies and commissions, particularly those involved in the harmonization of regulations and public policies including the World Health Organization and CODEX Alimentarius for food safety measurement, management and traceability. Our goal was to have high quality analysts, proper analytical methods, good laboratory facilities, and safety systems within guidelines of ISO/IEC 17025. All staff members took requirement exams. We applied proficiency tests in the analysis of veterinary drugs (nitrofuran metabolites, sulfonamide and tetracyclines), dioxins, organophosphorus pesticides, and heavy metals (Cd, Pb, As) to the Food Analysis Performance Assessment Scheme (FAPAS) at Central Science Laboratory, Department for Environment Food and Rural Affairs (DEFRA), England. The results were very satisfactory. All documents were prepared, including system management, laboratory management, standard operational procedures for testing, reporting, and more. The criteria encompassed the requirements of ISO/IEC 17025:1999. Finally, the Korea Laboratory Accreditation Scheme (KOLAS) accredited our testing laboratories in accordance with the provisions of Article 23 of the National Standards Act. The accreditation will give us the benefit of becoming a regional reference laboratory in Asia.

Application and Validation of an Optimal Analytical Method using QuEChERS for the determination of Tolpyralate in Agricultural Products (QuEChERS법을 활용한 농산물 중 제초제 Tolpyralate의 최적 분석법 선발 및 검증)

  • Lee, Han Sol;Park, Ji-Su;Lee, Su Jung;Shin, Hye-Sun;Kim, Ji-Young;Yun, Sang Soon;Jung, Yong-hyun;Oh, Jae-Ho
    • Korean Journal of Environmental Agriculture
    • /
    • v.39 no.3
    • /
    • pp.246-252
    • /
    • 2020
  • BACKGROUND: Pesticides are broadly used to control weeds and pests, and the residues remaining in crops are managed in accordance with the MRLs (maximum residue limits). Therefore, an analytical method is required to quantify the residues, and we conducted a series of analyses to select and validate the quick and simple analytical method for tolpyralate in five agricultural products using QuEChERS (quick, easy, cheap, effective, rugged and safe) method and LC-MS/MS (liquid chromatography-tandem mass spectrometry). METHODS AND RESULTS: The agricultural samples were extracted with acetonitrile followed by addition of anhydrous magnesium sulfate, sodium chloride, disodium hydrogencitrate sesquihydrate and trisodium citrate dihydrate. After shaking and centrifugation, purification was performed with d-SPE (dispersive-solid phase extraction) sorbents. To validate the optimized method, its selectivity, linearity, LOD (limit of detection), LOQ (limit of quantitation), accuracy, repeatability, and reproducibility from the inter-laboratory analyses were considered. LOQ of the analytical method was 0.01 mg/kg at five agricultural products and the linearity of matrix-matched calibration were good at seven concentration levels, from 0.0025 to 0.25 mg/L (R2≥0.9980). Mean recoveries at three spiking levels (n=5) were in the range of 85.2~112.4% with associated relative standard deviation values less than 6.2%, and the coefficient of variation between the two laboratories was also below 13%. All optimized results were validated according to the criteria ranges requested in the Codex Alimentarius Commission (CAC) and Ministry of Food and Drug Safety (MFDS) guidelines. CONCLUSION: In conclusion, we suggest that the selected and validated method could serve as a basic data for detecting tolpyralate residue in imported and domestic agricultural products.

Development of a Simultaneous Analytical Method for Determination of Herbicide Fenquinotrione and KIH-3653-M-2 Residues in Agricultural Crops using LC-MS/MS (LC-MS/MS를 이용한 농산물 중 제초제 fenquinotrione 및 대사산물 KIH-3653-M-2 동시시험법 개발)

  • Park, Ji-Su;Do, Jung-Ah;Lee, Han Sol;Cho, Sung Min;Shin, Hye-Sun;Jang, Dong Eun;Jung, Yong-hyun;Lee, Kangbong
    • Journal of Food Hygiene and Safety
    • /
    • v.34 no.3
    • /
    • pp.242-250
    • /
    • 2019
  • An analytical method was developed for the determination of fenquinotrione, a triketone herbicide, in agricultural products. Fenquinotrione was metabolized to KIH-3653-M-2 in plants. Analyte extraction was conducted using 2% formic acid in acetonitrile and cleaned up using a hydrophillic-lipophillic balance (HLB) cartridge. The limits of detection (LOD) and quantification (LOQ) were 0.004 and 0.01 mg/kg, respectively. Matrix-matched calibration curves were linear over the calibration ranges ($0.001{\sim}0.1{\mu}g/mL$) into a blank extract with $r^2>0.99$. The recovery results for fenquinotrione and KIH-3653-M-2 ranged between 81.1 to 116.2% and 78.0 to 110.0% at different concentration levels (LOQ, $10{\times}LOQ$, $50{\times}LOQ$) with relative standard deviation (RSD) less than 4.6%. All values were corresponded with the criteria ranges requested in both the Codex (CAC/GL 40-1993, 2003) and MFDS guidelines (2016). Therefore, the proposed method can be used as an official analytical method for determination of fenquinotrione in the Republic of Korea.

Development and Validation of an Analytical Method for Quinoxyfen in Agricultural Products using QuEChERS and LC-MS/MS (QuEChERS법 및 LC-MS/MS를 이용한 농산물 중 살균제 Quinoxyfen의 잔류시험법 개발 및 검증)

  • Cho, Sung Min;Do, Jung-Ah;Lee, Han Sol;Park, Ji-Su;Shin, Hye-Sun;Jang, Dong Eun;Choi, Young-Nae;Jung, Yong-hyun;Lee, Kangbong
    • Journal of Food Hygiene and Safety
    • /
    • v.34 no.2
    • /
    • pp.140-147
    • /
    • 2019
  • An analytical method was developed for the determination of quinoxyfen in agricultural products using the QuEChERS (Quick, Easy, Cheap, Effective, Rugged and Safe) method by liquid chromatography-tandem mass spectrometry (LC-MS/MS). The samples were extracted with 1% acetic acid in acetonitrile and water was removed by liquid-liquid partitioning with $MgSO_4$ (anhydrous magnesium sulfate) and sodium acetate. Dispersive solid-phase extraction (d-SPE) cleanup was carried out using $MgSO_4$, PSA (primary secondary amine), $C_{18}$ (octadecyl) and GCB (graphitized carbon black). The analytes were quantified and confirmed by using LC-MS/MS in positive mode with MRM (multiple reaction monitoring). The matrix-matched calibration curves were constructed using six levels ($0.001-0.25{\mu}g/mL$) and the coefficient of determination ($R^2$) was above 0.99. Recovery results at three concentrations (LOQ, 10 LOQ, and 50 LOQ, n=5) were in the range of 73.5-86.7% with RSDs (relative standard deviations) of less than 8.9%. For inter-laboratory validation, the average recovery was 77.2-95.4% and the CV (coefficient of variation) was below 14.5%. All results were consistent with the criteria ranges requested in the Codex guidelines (CAC/GL 40-1993, 2003) and Food Safety Evaluation Department guidelines (2016). The proposed analytical method was accurate, effective and sensitive for quinoxyfen determination in agricultural commodities. This study could be useful for the safe management of quinoxyfen residues in agricultural products.

Development and Validation of an Analytical Method for Fungicide Fluoxastrobin Determination in Agricultural Products (농산물 중 살균제 Fluoxastrobin의 시험법 개발 및 유효성 검증)

  • So Eun, Lee;Su Jung, Lee;Sun Young, Gu;Chae Young, Park;Hye-Sun, Shin;Sung Eun, Kang;Jung Mi, Lee;Yun Mi, Chung;Gui Hyun, Jang;Guiim, Moon
    • Journal of Food Hygiene and Safety
    • /
    • v.37 no.6
    • /
    • pp.373-384
    • /
    • 2022
  • Fluoxastrobin a fungicide developed from Strobilurus species mushroom extracts, can be used as an effective pesticide to control fungal diseases. In this study, we optimized the extraction and purification of fluoxastrobin according to its physical and chemical properties using the QuEChERS method and developed an LC-MS/MS-based analysis method. For extraction, we used acetonitrile as the extraction solvent, along with MgSO4 and PSA. The limit of quantitation of fluoxastrobin was 0.01 mg/kg. We used 0.01, 0.1, and 0.5 mg/kg of five representative agricultural products and treated them with fluoxastrobin. The coefficients of determination (R2) of fluoxastrobin and fluoxastrobin Z isomer were > 0.998. The average recovery rates of fluoxastrobin (n=5) and fluoxastrobin Z isomer were 75.5-100.3% and 75.0-103.9%, respectively. The relative standard deviations (RSDs) were < 5.5% and < 4.3% for fluoxastrobin and fluoxastrobin Z isomer, respectively. We also performed an interlaboratory validation at Gwangju Regional Food and Drug Administration and compared the recovery rates and RSDs obtained for fluoxastrobin and fluoxastrobin Z isomer at the external lab with our results to validate our analysis method. In the external lab, the average recovery rates and RSDs of fluoxastrobin and fluoxastrobin Z isomer at each concentration were 79.5-100.5% and 78.8-104.7% and < 18.1% and < 10.2%, respectively. In all treatment groups, the concentrations were less than those described by the 'Codex Alimentarius Commission' and the 'Standard procedure for preparing test methods for food, etc.'. Therefore, fluoxastrobin is safe for use as a pesticide.

Development of Analytical Method for Detection of Fungicide Validamycin A Residues in Agricultural Products Using LC-MS/MS (LC-MS/MS를 이용한 농산물 중 살균제 Validamycin A의 시험법 개발)

  • Park, Ji-Su;Do, Jung-Ah;Lee, Han Sol;Park, Shin-min;Cho, Sung Min;Shin, Hye-Sun;Jang, Dong Eun;Cho, Myong-Shik;Jung, Yong-hyun;Lee, Kangbong
    • Journal of Food Hygiene and Safety
    • /
    • v.34 no.1
    • /
    • pp.22-29
    • /
    • 2019
  • Validamycin A is an aminoglycoside fungicide produced by Streptomyces hygroscopicus that inhibits trehalase. The purpose of this study was to develop a method for detecting validamycin A in agricultural samples to establish MRL values for use in Korea. The validamycin A residues in samples were extracted using methanol/water (50/50, v/v) and purified with a hydrophilic-lipophilic balance (HLB) cartridges. The analyte was quantified and confirmed by liquid chromatograph-tandem mass spectrometer (LC-MS/MS) in positive ion mode using multiple reaction monitoring (MRM). Matrix-matched calibration curves were linear over the calibration ranges (0.005~0.5 ng) into a blank extract with $R^2$ > 0.99. The limits of detection and quantification were 0.005 and 0.01 mg/kg, respectively. For validation validamycin A, recovery studies were carried out three different concentration levels (LOQ, $LOQ{\times}10$, $LOQ{\times}50$, n = 5) with five replicates at each level. The average recovery range was from 72.5~118.3%, with relative standard deviation (RSD) less than 10.3%. All values were consistent with the criteria ranges requested in the Codex guidelines (CAC/GL 40-1993, 2003) and the NIFDS (National Institute of Food and Drug Safety) guideline (2016). Therefore, the proposed analytical method is accurate, effective and sensitive for validamycin A determination in agricultural commodities.