DOI QR코드

DOI QR Code

GC-MS/MS를 이용한 농산물 중 잔류농약 5종 동시시험법 개발 및 검증

Development and Validation of a Simultaneous Analytical Method for 5 Residual Pesticides in Agricultural Products using GC-MS/MS

  • Park, Eun-Ji (Pesticide and Veterinary Drug Residues Division, Food Safety Evaluation Department, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety) ;
  • Kim, Nam Young (Pesticide and Veterinary Drug Residues Division, Food Safety Evaluation Department, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety) ;
  • Shim, Jae-Han (College of Agriculture and Life Sciences, Chonnam National University) ;
  • Lee, Jung Mi (Pesticide and Veterinary Drug Residues Division, Food Safety Evaluation Department, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety) ;
  • Jung, Yong Hyun (Pesticide and Veterinary Drug Residues Division, Food Safety Evaluation Department, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety) ;
  • Oh, Jae-Ho (Pesticide and Veterinary Drug Residues Division, Food Safety Evaluation Department, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety)
  • 투고 : 2021.01.07
  • 심사 : 2021.05.20
  • 발행 : 2021.06.30

초록

PLS 제도가 모든 농산물을 대상으로 확대됨에 따라 잔류허용기준이 설정되지 않거나 허가되지 않은 농약에 대해서 일률적으로 0.01 mg/kg의 잔류허용기준을 적용하기 때문에 농약 시험법의 정량한계 수준은 0.01 mg/kg 이하를 만족시켜야 한다. 현재 식품공전에 존재하는 7.1.4.12 디메티핀 시험법은 정량한계가 0.05 mg/kg이며 7.1.3.2 디클로르보스 등 19종 시험법은 정량한계가 존재하지 않는다. 그리고 두 시험법 모두 전처리 과정 중 벤젠을 사용하여 인체 및 환경에 유해할 뿐 아니라 충전칼럼을 사용하여 노후화되고 복잡하다는 단점이 있다. 본 연구는 전처리 과정에 벤젠을 사용하는 성분 중 대체 시험법이 존재하지 않는 5종을 선별하여 다른 용매로 대체하고 QuEChERS법을 적용하여 0.01 mg/kg의 정량한계를 만족하는 동시시험법을 마련하고자 하였다. 대상성분들의 물리·화학적 특성을 고려하여 QuEChERS법을 이용한 최적 추출·정제법을 선정하여 LC-MS/MS를 이용한 분석법을 확립하고자 하였다. 수용성 유기용매인 1% 아세트산 함유 아세토니트릴을 추출용매로 사용하고 무수황산마그네슘 및 아세트산나트륨을 첨가하여 추출법을 최적화하고 d-SPE 흡착제를 통해 추출물 중 간섭물질을 효과적으로 제거하여 최적 정제조건을 확립하였다. 결정계수(R2)는 0.99 이상으로 높은 직선성을 보여주었고, 검출한계 및 정량한계는 각각 0.003, 0.01 mg/kg으로 높은 감도를 나타내었다. 대표 농산물 5종(현미, 감자, 대두, 감귤, 고추)에 대하여 정량한계, 정량한계 10배 및 정량한계 50배 수준으로 처리한 다음 회수율 실험을 한 결과 평균 회수율이 디메티핀은 90.8-114.1%, 디클로르보스는 96.0-113.5%, 오메토에이트는 79.8-119.3%, 클로르펜빈포스는 97.3-107.6% 그리고 아진포스메틸은 74.2-117.7%이었으며 상대표준편차는 모두 14.6% 이하로 확인되었다. 또한 실험실간 검증 결과 두 실험실간 회수율 평균값이 디메티핀은 94.5-108.7%, 디클로르보스는 92.6-112.8%, 오메토에이트는 74.7-116.1%, 클로르펜빈포스는 98.7-110.7% 그리고 아진포스메틸은 80.9-117.7%이었으며 상대표준편차는 모두 18.4% 이하로 나타났다. 본 연구는 국제식품규격위원회 가이드라인(Codex Alimentarius Commission, CAC/GL40)의 잔류농약 분석 기준 및 식품의약품안전평가원의 '식품등 시험법 마련 표준절차에 관한 가이드라인(2016)'에 적합한 수준임을 확인하였다. 따라서 본 연구에서 개발한 시험법은 농산물 중 잔류할 수 있는 디메티핀 등 5종의 안전관리를 위한 공정시험법으로 활용 가능할 것이다.

The aim of this research was to develop a rapid and easy multi-residue method for determining dimethipin, omethoate, dimethipin, chlorfenvinphos and azinphos-methyl in agricultural products (hulled rice, potato, soybean, mandarin and green pepper). Samples were prepared using QuEChERS (Quick, Easy, Cheap, Effective, Rugged and Safe) and analyzed using gas chromatography-tandem mass spectrometry (GC-MS/MS). Residual pesticides were extracted with 1% acetic acid in acetonitrile followed by addition of anhydrous magnesium sulfate (MgSO4) and anhydrous sodium acetate. The extracts were cleaned up using MgSO4, primary secondary amine (PSA) and octadecyl (C18). The linearity of the calibration curves, which waas excellent by matrix-matched standards, ranged from 0.005 mg/kg to 0.3 mg/kg and yielded the coefficients of determination (R2) ≥ 0.9934 for all analytes. Average recoveries spiked at three levels (0.01, 0.1, 0.5 mg/kg) and were in the range of 74.2-119.3%, while standard deviation values were less than 14.6%, which is below the Codex guideline (CODEX CAC/GL 40).

키워드

과제정보

This study was supported by a grant(19161수안기582) of ministry of food and drug safety in 2019, Republic of korea.

참고문헌

  1. Metzger, J.D., Keng, J., Effects of dimethipin, a defoliant and desiccant, on stomatal behavior and protein synthesis. J. Plant Growth Regul., 3, 141-156 (1984). https://doi.org/10.1007/BF02041999
  2. Metzger, J.D., Keng, J., Cellular basis for dimethipin-induced loss of leaf turgor and desiccation. J. Plant Growth Regul., 6, 33-40 (1987). https://doi.org/10.1007/BF02025373
  3. Macdonald, R.S., Surgeoner, G.A., Solomon, K.R., Harris, C.R., Effect of four spray regimes on the development of permethrin and dichlorvos resistance, in the laboratory, by the house fly (Diptera: Muscidae). J. Econ. Entomol., 76, 417-422 (1983). https://doi.org/10.1093/jee/76.3.417
  4. Han, J., Kim, G.H., Susceptibilities of german cockroach, Blattella germanica to insecticides according to application methods. Korean J. Appl. Entomol., 43, 241-247 (2004).
  5. Beynon, K.I., Edwards, M.J., Elgar, K., Wright, A.N., Analysis of crops and soils for residues of chlorfenvinphos insecticide and its breakdown products. J. Sci. Food Agric., 19, 302-307 (1968). https://doi.org/10.1002/jsfa.2740190604
  6. Suett, D.L., Influence of formulation on chlorfenvinphos uptake and cabbage root fly control on radish. Ann. Appl. Biol., 92, 173-184 (1979). https://doi.org/10.1111/j.1744-7348.1979.tb03862.x
  7. Lee, H., Han, J., Yoon, E., Kim, H., Hwang, I.G., Choi, D.M., Lee, K.B., Won, K.P., Song, I.S., Park, S.E., Shin, D.C., Cumulative risk assessment of organophosphorus pesticides in the diet. J. Food Hyg. Saf., 16, 21-26 (2001).
  8. Ministry of Food Drug Safety, (2021, June 18). Pesticides MRLs in agricultural commodities. Retrieved from https://www.foodsafetykorea.go.kr/foodcode/02_01.jsp
  9. Huff, J., Benzene-induced cancers: abridged history and occupational health impact. Int. J. Occup. Environ. Health, 13, 213-221 (2007). https://doi.org/10.1179/oeh.2007.13.2.213
  10. Edokpolo, B., Yu, Q.J., Connell, D., Health risk assessment of ambient air concentrations of benzene, toluene and xylen (BTX) in service station environments. Int. J. Environ. Res. Public Health, 11, 6354-6374 (2014). https://doi.org/10.3390/ijerph110606354
  11. Anastassiades, M., Lehotay, S.J., Stajnbaher, D., Schenck, F.J., Fast and easy multiresidue method employing acetonitrile extraction/partitioning and "dispersive solid-phase extraction" for the determination of pesticide residues in produce. J. AOAC Int., 86, 412-431 (2003). https://doi.org/10.1093/jaoac/86.2.412
  12. Lehotay, S.J., Determination of pesticide residues in foods by acetonitrile extraction and partitioning with magnesium sulfate: collaborative study. J. AOAC Int., 90, 485-520 (2007). https://doi.org/10.1093/jaoac/90.2.485
  13. Lehotay, S.J., Son, K.A., Kwon, H., Koesukwiwat, U., Fu, W., Mastovska, K., Hoh, E., Leepipatpiboonc, N., Comparison of QuEChERS sample preparation methods for the analysis of pesticide residues in fruits and vegetables. J. Chromatogr. A, 1217, 2548-2560 (2010). https://doi.org/10.1016/j.chroma.2010.01.044
  14. CODEX Alimentarius Commission, 2003. Guidelines on good laboratory practice in residue analysis, CAC/GL 40-1993. CAC, Rome, Italy.
  15. Ministry of Food and Drug Safety, (2021, June 18). Guidelines on standard procedures for preparing analysis method. Retrieved from http://www.nifds.go.kr/brd/m_15/view.do?seq=8215
  16. Stan, H.J., Pesticide residue analysis in foodstuffs applying capillary gas-chromatography with mass spectrometric detection state-of-the-art use of modified DFG-multimethod S19 and automated data evaluation. J. Chromatogr. A, 892, 347-377 (2000). https://doi.org/10.1016/S0021-9673(00)00308-3
  17. Cengiz, M.F., Certel, M., Gocmen, H., Residue contents of DDVP (Dichlorvos) and diazinon applied on cucumbers grown in greenhouses and their reduction by duration of a pre-harvest interval and post-harvest culinary applications. Food Chem., 98, 127-135 (2006). https://doi.org/10.1016/j.foodchem.2005.05.064
  18. Suett, D.L., Persistence and degradation of chlorfenvinphos, diazinon, fonofos and phorate in soils and their uptake by carrots. Pest. Sci., 2, 105-112 (1971). https://doi.org/10.1002/ps.2780020304
  19. Athanasopoulos, P.E., Pappas, C., Effects of fruit acidity and storage conditions on the rate of degradation of azinphos methyl on apples and lemons. Food Chem., 69, 69-72 (2000). https://doi.org/10.1016/S0308-8146(99)00241-1