• Title/Summary/Keyword: Coded MIMO

Search Result 87, Processing Time 0.025 seconds

Performance Analysis of Space-Time Codes in Realistic Propagation Environments: A Moment Generating Function-Based Approach

  • Lamahewa Tharaka A.;Simon Marvin K.;Kennedy Rodney A.;Abhayapala Thushara D.
    • Journal of Communications and Networks
    • /
    • v.7 no.4
    • /
    • pp.450-461
    • /
    • 2005
  • In this paper, we derive analytical expressions for the exact pairwise error probability (PEP) of a space-time coded system operating over spatially correlated fast (constant over the duration of a symbol) and slow (constant over the length of a code word) fad­ing channels using a moment-generating function-based approach. We discuss two analytical techniques that can be used to evaluate the exact-PEPs (and therefore, approximate the average bit error probability (BEP)) in closed form. These analytical expressions are more realistic than previously published PEP expressions as they fully account for antenna spacing, antenna geometries (uniform linear array, uniform grid array, uniform circular array, etc.) and scattering models (uniform, Gaussian, Laplacian, Von-mises, etc.). Inclusion of spatial information in these expressions provides valuable insights into the physical factors determining the performance of a space-time code. Using these new PEP expressions, we investigate the effect of antenna spacing, antenna geometries and azimuth power distribution parameters (angle of arrival/departure and angular spread) on the performance of a four-state QPSK space-time trellis code proposed by Tarokh et al. for two transmit antennas.

8 Antenna Polar Switching Up-Down Relay Networks

  • Li, Jun;Lee, Moon-Ho;Yan, Yier;Peng, Bu Shi;Hwang, Gun-Joon
    • Journal of electromagnetic engineering and science
    • /
    • v.11 no.4
    • /
    • pp.239-249
    • /
    • 2011
  • In this paper, we propose a reliable $8{\times}8$ up-down switching polar relay code based on 3GPP LTE standard, motivated by 3GPP LTE down link, which is 30 bps/Hz for $8{\times}8$ MIMO antennas, and by Arikan's channel polarization for the frequency selective fading (FSF) channels with the generator matrix $Q_8$. In this scheme, a polar encoder and OFDM modulator are implemented sequentially at both the source node and relay nodes, the time reversion and complex conjugation operations are separately implemented at each relay node, and the successive interference cancellation (SIC) decoder, together with the cyclic prefix (CP) removal, is performed at the destination node. Use of the scheme shows that decoding at the relay without any delay is not required, which results in a lower complexity. The numerical result shows that the system coded by polar codes has better performance than currently used designs.

Efficient Hybrid ARQ with Space-Time Coding and Low-Complexity Decoding (Space-Time Coding과 낮은 복잡도의 복호 방범을 사용한 효과적인 Hybrid ARQ 기법)

  • Oh Mi-Kyung;Kwon Yeong-Hyen;Park Dong-Jo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.12C
    • /
    • pp.1222-1230
    • /
    • 2005
  • We aim at increasing the throughput of the hybrid automatic retransmission request (HARQ) protocol in Space-Time (ST) coded multi-antenna transmission systems. By utilizing reliability information at the decoder, we obtain an improved probability of successful decoding, which enhances the overall system throughput at low-complexity. Simulations and analytical results demonstrate the performance of our scheme in impulse noise environment as well as AWGN and fading multi-input multi-ouput (MIMO) channels.

The Layered Receiver Employing Whitening Process for Multiple Space-Time Codes (다중 시공간 부호를 위한 백색화 과정을 이용한 계층화 수신기)

  • Yim Eun Jeong;Kim Dong Ku
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.42 no.3 s.333
    • /
    • pp.15-18
    • /
    • 2005
  • Multiple space-time codes (M-STTC) is composed of several space-time codes. That provides high transmission rate as well as diversity and coding gain without bandwidth expansion. In this paper, the layered receiver structures employing whitening process for M-STTC is proposed. The proposed receiver is composed of the decoding order decision block and the layered detection block. The whitening process in the latter is utilized to maximize the receive diversity gain in the layered detection. The layered receiver employing whitening process has more diversity gain and advantage of the required number of receive antenna over the layered detection with MMSE nulling. The proposed scheme achieves a 5dB gain compared to the coded layered space-time processing at the FER of $10^{-2}$.

Effect of Multiple Antennas at a Relay Node on the Performance of Physical-Layer Network Coding in Two-Way Relay Channel (양방향 중계채널에서 중계기 다중안테나가 물리계층네트워크 코딩의 성능에 미치는 영향)

  • Park, Jeonghong;Jung, Bang Chul;Ban, Tae-Won
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.8
    • /
    • pp.1438-1443
    • /
    • 2016
  • In this paper, we investigate the effect of multiple antennas at a relay node on the performance of physical-layer network coding (PNC) in the two-way relay channel (TWRC). We assume that two source nodes have a single antenna and the relay node has multiple antennas. We extend the conventional TWRC environment with a signle antenna at both relay and source nodes to the case of multiple antennas at the relay node. In particular, we consider two decoding strategies: separate decoding (SD) and direct decoding (DD). The SD decodes each packet from the two sources and performs the network coding with bit-wise exclusive OR (XOR) operation, while the DD decodes the network-coded packet from the two sources. Note that both decoding strategies are based on log-likelihood ratio (LLR) computation. It is shown that the bit error rate (BER) performance becomes significantly improved as the number of antennas at the relay node.

Block Turbo Codes for High Order Modulation and Transmission Over a Fast Fading Environment (고차원변조 방식 및 고속 페이딩 전송 환경을 위한 블럭터보부호)

  • Jin, Xianggunag;Kim, Soo-Young;Kim, Won-Yong;Cho, Yong-Hoon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37 no.6A
    • /
    • pp.420-425
    • /
    • 2012
  • A forward error correction (FEC) coding techniques is one of time diversity techniques with which the effect of channel impairments due to noise and fading are spreaded over independently, and thus the performance could be improved. Therefore, the performance of the FEC scheme can be maximized if we minimize the correlation of channel information across over a codeword. In this paper, we propose a block turbo code with the maximized time diversity effect which may be reduced due to utilization of high order modulation schemes and due to transmission over a comparatively fast fading environment. Especially, we propose a very simple formula to calculate the address of coded bit allocation, and thus we do not need any additional outer interleavers, i.e., inter-codeword interleavers. The simulation resuts investigated in this paper reveal that the proposed scheme can provide the performance gain of more than a few decibels compared to the conventional schemes.

Concatenated Diversity System for Bandwidth Efficient Communication of Flight Type Air Node in Unstable Channel Environments (비정형 통신 채널 환경에서 비행형 에어노드의 대역 효율적인 통신을 위한 연접 다이버시티 시스템)

  • Kang, Chul-Gyu;Park, Jin-Hee;Oh, Chang-Heon
    • Journal of Advanced Navigation Technology
    • /
    • v.16 no.2
    • /
    • pp.247-254
    • /
    • 2012
  • In this paper, we propose a concatenated diversity system to assure the data transmission reliability between flight type air nodes which move according to their atypical orbit, then its performance is analyzed using computer simulation and it is designed with hdl. The proposed system cannot only improve a bandwidth efficient and coding gain from diversity TCM code but also the reliability of data transmission is high. From the computer simulation result about bit error rate(BER) of the proposed system, we confirm that its BER performance is about 11dB greater than TCM code at $10^{-2}$ and about 11dB greater than space time block code at $10^{-3}$ which has a full diversity gain. In addition, when we compare its BER performance with space time trellis code which has both a diversity gain and a coding gain, the performance of the proposed system is greater than about 1.5dB at $10^{-5}$. Lastly, after designing the proposed system with HDL, we can confirm that the operation result is correct.