• Title/Summary/Keyword: Code-Based Cryptography

Search Result 26, Processing Time 0.027 seconds

Secure Message Transmission against Remote Control System

  • Park, Taehwan;Seo, Hwajeong;Bae, Bongjin;Kim, Howon
    • Journal of information and communication convergence engineering
    • /
    • v.14 no.4
    • /
    • pp.233-239
    • /
    • 2016
  • A remote control system (RCS) can monitor a user's confidential information by using the broadcast receivers in Android OS. However, the current RCS detection methods are based only on a virus vaccine. Therefore, if the user's smartphone is infected by a brand new RCS, these methods cannot detect this new RCS immediately. In this paper, we present a secure message transmission medium. This medium is completely isolated from networks and can communicate securely through a QR code channel by using symmetric key cryptography such as the AES block cipher and public key cryptography such as elliptic curve cryptography for providing security. Therefore, the RCS cannot detect any confidential information. This approach is completely immune to any RCS attacks. Furthermore, we present a secure QR code-based key exchange protocol by using the elliptic curve Diffie-Hellman method and message transmission protocols; the proposed protocol has high usability and is very secure.

Implementation of Quantum Gates for Binary Field Multiplication of Code based Post Quantum Cryptography (부호 기반 양자 내성 암호의 이진 필드 상에서 곱셈 연산 양자 게이트 구현)

  • Choi, Seung-Joo;Jang, Kyong-Bae;Kwon, Hyuk-Dong;Seo, Hwa-Jeong
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.24 no.8
    • /
    • pp.1044-1051
    • /
    • 2020
  • The age of quantum computers is coming soon. In order to prepare for the upcoming future, the National Institute of Standards and Technology has recruited candidates to set standards for post quantum cryptography to establish a future cryptography standard. The submitted ciphers are expected to be safe from quantum algorithm attacks, but it is necessary to verify that the submitted algorithm is safe from quantum attacks using quantum algorithm even when it is actually operated on a quantum computer. Therefore, in this paper, we investigate an efficient quantum gate implementation for binary field multiplication of code based post quantum cryptography to work on quantum computers. We implemented the binary field multiplication for two field polynomials presented by Classic McEliece and three field polynomials presented by ROLLO in generic algorithm and Karatsuba algorithm.

Design of a Lightweight Security Protocol Using Post Quantum Cryptography (양자내성암호를 활용한 경량 보안 프로토콜 설계)

  • Jang, Kyung Bae;Sim, Min Joo;Seo, Hwa Jeong
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.9 no.8
    • /
    • pp.165-170
    • /
    • 2020
  • As the IoT (Internet of Things) era is activated, a lot of information including personal information is being transmitted through IoT devices. For information protection, it is important to perform cryptography communication, and it is required to use a lightweight security protocol due to performance limitations. Currently, most of the encryption methods used in the security protocol use RSA and ECC (Elliptic Curve Cryptography). However, if a high performance quantum computer is developed and the Shor algorithm is used, it can no longer be used because it can easily solve the stability problems based on the previous RSA and ECC. Therefore, in this paper, we designed a security protocol that is resistant to the computational power of quantum computers. The code-based crypto ROLLO, which is undergoing the NIST (National Institute of Standards and Technology) post quantum cryptography standardization, was used, and a hash and XOR computation with low computational consumption were used for mutual communication between IoT devices. Finally, a comparative analysis and safety analysis of the proposed protocol and the existing protocol were performed.

A Cryptography Algorithm using Telescoping Series (망원급수를 이용한 암호화 알고리즘)

  • Choi, Eun Jung;Sakong, Yung;Park, Wang Keun
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.9 no.4
    • /
    • pp.103-110
    • /
    • 2013
  • In Information Technology era, various amazing IT technologies, for example Big Data, are appearing and are available as the amount of information increase. The number of counselling for violation of personal data protection is also increasing every year that it amounts to over 160,000 in 2012. According to Korean Privacy Act, in the case of treating unique personal identification information, appropriate measures like encipherment should be taken. The technologies of encipherment are the most basic countermeasures for personal data invasion and the base elements in information technology. So various cryptography algorithms exist and are used for encipherment technology. Therefore studies on safer new cryptography algorithms are executed. Cryptography algorithms started from classical replacement enciphering and developed to computationally secure code to increase complexity. Nowadays, various mathematic theories such as 'factorization into prime factor', 'extracting square root', 'discrete lognormal distribution', 'elliptical interaction curve' are adapted to cryptography algorithms. RSA public key cryptography algorithm which was based on 'factorization into prime factor' is the most representative one. This paper suggests algorithm utilizing telescoping series as a safer cryptography algorithm which can maximize the complexity. Telescoping series is a type of infinite series which can generate various types of function for given value-the plain text. Among these generated functions, one can be selected as a original equation. Some part of this equation can be defined as a key. And then the original equation can be transformed into final equation by improving the complexity of original equation through the command of "FullSimplify" of "Mathematica" software.

μ-Hope : Compact Size RLWE Based KEM Using Error Correcting Code (μ-Hope : 오류 정정 부호를 사용한 RLWE 기반의 경량 KEM)

  • Lee, Juyeop;Kim, Suhri;Kim, Chang Han;Hong, Seokhie
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.30 no.5
    • /
    • pp.781-793
    • /
    • 2020
  • In this paper, we propose a new RLWE-based scheme named μ-Hope that exploits Error Correcting Code(ECC) on NewHope. The previous parameters of NewHope uses 12289 as a prime modulus, and the size of the public key, private key, and ciphertext is 928-byte, 1888-byte, and 1120-byte respectively, which can be said to be larger than other RLWE based algorithms. In this paper, we propose μ-Hope, which changes modulus 12289 to 769 to reduce the size of the public key, private key, and ciphertext. Also, we adopts XE1 as an Error Correcting Code(ECC) to solve the increased decryption failure rate caused by using a small prime modulus. As a result, the size of the public key, private key, and ciphertext decreased by 38%, 37%, and 37% respectively. As the computational efficiency caused by using a small prime modulus exceeds the performance degradation by exploiting ECC, this result in 25% performance improvement for a single key exchange.

Homomorphic Subspace MAC Scheme for Secure Network Coding

  • Liu, Guangjun;Wang, Xiao
    • ETRI Journal
    • /
    • v.35 no.1
    • /
    • pp.173-176
    • /
    • 2013
  • Existing symmetric cryptography-based solutions against pollution attacks for network coding systems suffer various drawbacks, such as highly complicated key distribution and vulnerable security against collusion. This letter presents a novel homomorphic subspace message authentication code (MAC) scheme that can thwart pollution attacks in an efficient way. The basic idea is to exploit the combination of the symmetric cryptography and linear subspace properties of network coding. The proposed scheme can tolerate the compromise of up to r-1 intermediate nodes when r source keys are used. Compared to previous MAC solutions, less secret keys are needed for the source and only one secret key is distributed to each intermediate node.

An Implementation of Supersingular Isogeny Diffie-Hellman and Its Application to Mobile Security Product (초특이 아이소제니 Diffie-Hellman의 구현 및 모바일 보안 제품에서의 응용)

  • Yoon, Kisoon;Lee, Jun Yeong;Kim, Suhri;Kwon, Jihoon;Park, Young-Ho
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.28 no.1
    • /
    • pp.73-83
    • /
    • 2018
  • There has been increasing interest from NIST and other companies in studying post-quantum cryptography in order to resist against quantum computers. Multivariate polynomial based, code based, lattice based, hash based digital signature, and isogeny based cryptosystems are one of the main categories in post quantum cryptography. Among these categories, isogeny based cryptosystem is known to have shortest key length. In this paper, we implemented Supersingular Isogeny Diffie-Hellman (SIDH) protocol efficiently on low-end mobile device. Considering the device's specification, we select supersingular curve on 523 bit prime field, and generate efficient isogeny computation tree. Our implementation of SIDH module is targeted for 32bit environment.

A PERFORMANCE IMPROVEMENT OF ANEL SCHEME THROUGH MESSAGE MAPPING AND ELLIPTIC CURVE CRYPTOGRAPHY

  • Benyamina Ahmed;Benyamina Zakarya
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.3
    • /
    • pp.169-176
    • /
    • 2023
  • The vehicular ad hoc network (VANET) is currently an important approach to improve personal safety and driving comfort. ANEL is a MAC-based authentication scheme that offers all the advantages of MAC-based authentication schemes and overcomes all their limitations at the same time. In addition, the given scheme, ANEL, can achieve the security objectives such as authentication, privacy preservation, non-repudiation, etc. In addition, our scheme provides effective bio-password login, system key update, bio-password update, and other security services. Additionally, in the proposed scheme, the Trusted Authority (TA) can disclose the source driver and vehicle of each malicious message. The heavy traffic congestion increases the number of messages transmitted, some of which need to be secretly transmitted between vehicles. Therefore, ANEL requires lightweight mechanisms to overcome security challenges. To ensure security in our ANEL scheme we can use cryptographic techniques such as elliptic curve technique, session key technique, shared key technique and message authentication code technique. This article proposes a new efficient and light authentication scheme (ANEL) which consists in the protection of texts transmitted between vehicles in order not to allow a third party to know the context of the information. A detail of the mapping from text passing to elliptic curve cryptography (ECC) to the inverse mapping operation is covered in detail. Finally, an example of application of the proposed steps with an illustration

FPGA-Based Post-Quantum Cryptography Hardware Accelerator Design using High Level Synthesis (HLS 를 이용한 FPGA 기반 양자내성암호 하드웨어 가속기 설계)

  • Haesung Jung;Hanyoung Lee;Hanho Lee
    • Transactions on Semiconductor Engineering
    • /
    • v.1 no.1
    • /
    • pp.1-8
    • /
    • 2023
  • This paper presents the design and implementation of Crystals-Kyber, a next-generation postquantum cryptography, as a hardware accelerator on an FPGA using High-Level Synthesis (HLS). We optimized the Crystals-Kyber algorithm using various directives provided by Vitis HLS, configured the AXI interface, and designed a hardware accelerator that can be implemented on an FPGA. Then, we used Vivado tool to design the IP block and implement it on the ZYNQ ZCU106 FPGA. Finally, the video was recorded and H.264 compressed with Python code in the PYNQ framework, and the video encryption and decryption were accelerated using Crystals-Kyber hardware accelerator implemented on the FPGA.

Compact Implementation and Analysis of Rainbow on 8bits-Microcontroller Uunit (8비트 마이크로컨트롤러 유닛 상에서 Rainbow 최적화 구현 및 분석)

  • Hong, Eungi;Cho, Seong-Min;Kim, Aeyoung;Seo, Seung-Hyun
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.29 no.4
    • /
    • pp.697-708
    • /
    • 2019
  • In this paper, we propose and implement a method to optimize Rainbow for 8 bit MCU(Microcontroller Unit). As quantum computers have been developed, the security of existing cryptography, especially the signature algorithms, has been threatened, so it is necessary to apply a signature scheme with a quantum-resistance to IoT devices. Currently, the proposed PQC(Post Quantum Cryptography) are lattice-based, hash-based, code-based, and MQ(Multivariate Quadratic)-based cryptographic algorithms and signature schemes. In particular, MQ-based signature schemes are faster than conventional signature schemes and are suitable for IoT devices Do. However, it is difficult to apply 8-bit MCU, which has a large key length and large number of computations, to the memory and performance of IoT devices. In this paper, we propose a method of storing Rainbow, which is a MQ-based signing scheme, in 8-bit MCU by dividing the key and optimizing the computation method. By reducing the memory consumption and improving the algorithm speedily, Compare performance.