• Title/Summary/Keyword: Code validation

Search Result 456, Processing Time 0.036 seconds

Viscous Flow Analysis of a Submarine with Variation of Angle of Attack and Yaw Angle (유동 방향 변화에 따른 잠수함 주위의 3차원 점성유동 해석과 공기역학적 계수의 변화)

  • Jang Jin-Ho;Park Warn-Gyu
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.189-192
    • /
    • 2002
  • In this paper, the submarine model, called DARPA SUBOFF model, has been numerically analyzed to investigate the aerodynamic forces variation in terms of angle of attacks and yaw angles. The SUBOFF model is consisted of the three parts : axisymmetric body, fairwater, and four symmetric stern appendages. Three dimensional unsteady incompressible Wavier-Stokes equation was used on curvilinear multi-block grid system. To validate the present code, the SUBOFF tare hull and an ellipsoid at angle of attacks of $10^{\circ}\;and\;30^{\circ}$ were simulated and a good agreement with experiments was obtained. After the code validation, the flows over SUBOFF model were simulated at three different angle of attacks and yaw angles. The variation of aerodynamic forces in terms of angle of attack and yaw angle were calculated. Also, to understand the flow features around a submarine with variation of yaw and attack angle, the pressure contours and streamlines were plotted.

  • PDF

Analysis of rigid and semi-rigid steel-concrete composite joints under monotonic loading - Part I: Finite element modelling and validation

  • Amadio, C.;Fragiacomo, M.
    • Steel and Composite Structures
    • /
    • v.3 no.5
    • /
    • pp.349-369
    • /
    • 2003
  • The paper concerns the modelling of rigid and semi-rigid steel-concrete composite joints under monotonic loading through use of the Abaqus program, a widespread finite element code. By comparing numerical and experimental results obtained on cruciform tests, it is shown that the proposed modelling allows a good fit of the global joint response in terms of moment-rotation law. Even the local response in terms of stresses and strains is adequately predicted. Hence, this numerical approach may represent a useful tool for attaining a better understanding of experimental results. It may also be used to perform parametric analyses and to calibrate simplified mechanical models for practical applications.

TRACE V5 CODE APPLICATION DVI LINE BREAK LOCA USING ATLAS FACILITY

  • Veronese, Fabio;Kozlowsk, Tomasz
    • Nuclear Engineering and Technology
    • /
    • v.44 no.7
    • /
    • pp.719-726
    • /
    • 2012
  • The object of this work is the validation and assessment of the TRACE v5.0 code using the scaled test ATLAS1 facility in the context of a DVI2 line break. In particular, the experiment selected models the 50%, 6-inch break of a DVI line. The same experiment was also adopted as a reference test in the ISP-503. The ISP-50 was proposed to, and accepted by, the OECD/NEA/CSNI due to its technical importance in the development of a best-estimate of safety analysis methodology for DVI line break accidents. In particular, the behavior of the two-phase flow in the upper annulus downcomer was expected to be complicated. What resulted was the need for relevant models to be implemented into safety analysis codes, in order to predict these thermal hydraulic phenomena correctly.

MCCARD: MONTE CARLO CODE FOR ADVANCED REACTOR DESIGN AND ANALYSIS

  • Shim, Hyung-Jin;Han, Beom-Seok;Jung, Jong-Sung;Park, Ho-Jin;Kim, Chang-Hyo
    • Nuclear Engineering and Technology
    • /
    • v.44 no.2
    • /
    • pp.161-176
    • /
    • 2012
  • McCARD is a Monte Carlo (MC) neutron-photon transport simulation code. It has been developed exclusively for the neutronics design of nuclear reactors and fuel systems. It is capable of performing the whole-core neutronics calculations, the reactor fuel burnup analysis, the few group diffusion theory constant generation, sensitivity and uncertainty (S/U) analysis, and uncertainty propagation analysis. It has some special features such as the anterior convergence diagnostics, real variance estimation, neutronics analysis with temperature feedback, $B_1$ theory-augmented few group constants generation, kinetics parameter generation and MC S/U analysis based on the use of adjoint flux. This paper describes the theoretical basis of these features and validation calculations for both neutronics benchmark problems and commercial PWR reactors in operation.

Testbench Implementation for FPGA based Nuclear Safety Class System using OVM

  • Heo, Hyung-Suk;Oh, Seungrohk;Kim, Kyuchull
    • Journal of IKEEE
    • /
    • v.18 no.4
    • /
    • pp.566-571
    • /
    • 2014
  • A safety class field programmable gate array based system in nuclear power plant has been developed to improve the diversity. Testbench is necessary to satisfy the technical reference, IEC-62566, for verification and validation of register transfer level code. We use the open verification methodology(OVM) developed by standard body. We show that our testbench can use random input for test. And also we show that reusability of block level testbench for the integration level testbench, which is very efficient for large scale system like nuclear reactor protection system.

Numerical Study of Defrost Phenomenon of Automobile Windshield (자동차 전방 유리면 성에 전산 해빙해석)

  • 박만성;황지은;박원규;장기룡
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.2
    • /
    • pp.157-163
    • /
    • 2003
  • This work was undertaken for the numerical analysis of defrosting phenomena of automobile windshield. To analyze the defrost, the flow and temperature field of cabin interior, heat transfer through the windshield glass, and phase change of the frost should be analyzed simultaneously. The flow field was obtained by solving the 3-D unsteady Navier-Stokes equation and the temperature field was computed by energy equation. The phase-change process of Stefan problem was solved by enthalpy method. For code validation, the temperature field of the driven cavity was calculated. The result of calculation shows a good agreement with the other numerical results. Then, the present code was applied to the defrosting analysis of a real automobile and, also, a good agreement with experiment was obtained.

Effects of Spray Breakup Model Variables on Spray and Combustion Characteristics (분열모델 상수가 분무 및 연소특성에 미치는 영향)

  • Lee, Seungpil;Park, Junkyu;Park, Sungwook
    • Journal of ILASS-Korea
    • /
    • v.22 no.1
    • /
    • pp.29-35
    • /
    • 2017
  • This paper describes the effects of spray breakup model constants on spray and combustion characteristics in single cylinder compression engine. KIVA-3V code coupled with a CHEMKIN chemistry solver was used for numerical analysis. In this study, spray simulations and combustion simulations are studied simultaneously. Spray simulation was conducted in constant volume to reduce the effects of air-flow as swirl or tumble. The model validation was conducted and there are little difference between experiments and simulation, this differences were reasonable. In spray simulation, the effects of model constants on spray tip penetration, spray patter and SMD were studied. Furthermore, the analysis of effects of breakup variables on combustion and emissions characteristics was conducted. The results show the KH-RT breakup model constants affects spray and combustion characteristics strongly. Increasing KH model variable (B1) and RT model constants ($C_{\tau}$, $C_{RT}$) induced slower breakup time.

SoC Front-end 설계를 위한 통합 환경

  • 김기선;김성식;이희연;김기현;채재호
    • The Magazine of the IEIE
    • /
    • v.30 no.9
    • /
    • pp.1002-1011
    • /
    • 2003
  • In this paper, we introduce an integrated SoC front-end design & verification environment which can be practically used in the embedded 32-bit processor-core SoC VLSI design. Our introduced SoC design & verification environment integrates two most important flows, such as the RTL power estimation and code coverage analysis, with the functional verification (chip validation) flow which is used in the conventional simulation-based design. For this, we developed two simulation-based inhouse tools, RTL power estimator and code coverage analyzer, and used them to adopt them to our RTL design and to increase the design quality of that. Our integrated design environment also includes basic design and verification flows such as the gate-level functional verification with back annotation information and test vector capture & replay environment.

  • PDF

Numerical Viscous Flow Analysis of Ducted Marine Propeller (Ducted Marine Propeller의 점성 유동 수치 해석)

  • Yu Hye-Ran;Jung Young-Rae;Park Warn-Gyu
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2003.08a
    • /
    • pp.188-193
    • /
    • 2003
  • The present work solved 3D incompressible RANS equation on a rotating, non-orthogonal multi-blocked grid system to efficiently analyze ducted marine propulsor with rotor-stator interaction. To handle the interface boundary between a rotor and a stator maintaining the conservative property, the sliding multiblock technique using the cubic spline interpolation and the bilinear interpolation technique were applied. To validate present code, a turbine flow having rotor- stator interaction was simulated. Time averaged pressure coefficients were compared with experiments and good agreement was obtained. After the code validation, the flowfield around a single-stage ducted marine propulsor was simulated.

  • PDF

Study of supersonic flame acceleration within AN-based high explosive containing various gap materials (AN계열 화약의 다양한 Gap 실험을 통한 초음속 화염 전파 특성 연구)

  • Lee, Jin-Wook;Yoh, Jai-Ick
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2012.05a
    • /
    • pp.342-349
    • /
    • 2012
  • We study the gap effect on detonating high explosives using the characteristic acoustic impedance theory and numerical simulation. A block of charge embedded with multiple gap inserts is detonated at one end to understand the ensuing flame propagation through multiple gap materials. The present high-order multimaterial simulation provides meaningful validation of complex interface tracking algorithm as it is implemented in the SNU-Hydropack code.

  • PDF