• Title/Summary/Keyword: Code performance

Search Result 4,240, Processing Time 0.031 seconds

Construction of Correlation between Basic Soil Properties and Deformation Modulus of Trackbed Soils Based on Laboratory and Field Mechanical Tests (역학적 실내외 시험에 의한 철도궤도 상부노반용 흙재료의 기본물성과 변형계수 상관성 평가)

  • Park, Jae Beom;Choi, Chan Yong;Ji, Sang Hyun;Lim, Sang Jin;Lim, Yu Jin
    • Journal of the Korean Society for Railway
    • /
    • v.19 no.2
    • /
    • pp.204-212
    • /
    • 2016
  • The soils used as trackbed in Korea are selected using USCS utilizing basic soil properties such as Grain Size Distribution(GSD), % passing of #200 sieve ($P_{200}$), % passing of #4 sieve ($P_4$), Coefficient of uniformity ($C_u$), and Coefficient of curvature ($C_c$). Degree of compaction of the soils adapted in the code by KR should be evaluated by maximum dry density (${\gamma}_{d-max}$) and deformation modulus $E_{v2}$. The most important influencing factor that is critical to stability and deformation of the compacted soils used as trackbed is stiffness. Thus, it is necessary to construct a correlation between the modulus and the basic soil properties of trackbed soil in order to redefine a new soil classification system adaptable only to railway construction. To construct the relationship, basic soil test data is collected as a database, including GSD, maximum dry unit weight (${\gamma}_{d-max}$), OMC, $P_{200}$, $P_4$, $C_u$, $C_c$, etc.; deformation modulus $E_{v2}$ and $E_{vd}$ are obtained independently by performing a Repeated Plated Bearing Test (RPBT) and Light Weight Deflectometer Test (LWDT) for ten different railway construction sites. A linear regression analysis is performed using SPSS to obtain the relationship between the basic soil properties and the deformation modulus $E_{v2}$ and $E_v$. Based on the constructed relationship and the various obtained mechanical test data, a new soil classification system will be proposed later as a guideline for the design and construction of trackbed foundation in Korea.

PS-Net : Personalized Secure Wi-Fi Networks (PS-Net : 개인별 보안 Wi-Fi 네트워크)

  • Lee, Nam-Seh;Lee, Ju-Ho;Jeong, Choong-Kyo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.40 no.3
    • /
    • pp.497-505
    • /
    • 2015
  • Existing Wi-Fi networks require users to follow network settings of the AP (Access Point), resulting in inconveniences for users, and the password of the AP is shared by all users connected to the AP, causing security information leaks as time goes by. We propose, in this work, a personalized secure Wi-Fi network, in which each user is assigned her own virtual Wi-Fi network. One virtual Wi-Fi per user makes the user-centric network configuration possible. A user sets a pair of her own SSID and password on her device a priori, and the AP publishes its public key in a suitable way. The AP also maintains an open Wi-Fi channel, to which users can connect anytime. On user's request, the user device sends a connection request message containing a pair of SSID and password encrypted with the AP's public key. Receiving the connection request message, the AP instantiates a new virtual AP secured with the pair of SSID and password, which is dedicated to that single user device. This virtual network is securer because the password is not shared among users. It is more convenient because the network adapts itself to the user device. Experiments show that these advantages are obtained with negligible degradation in the throughput performance.

A Kernel-level RTP for Efficient Support of Multimedia Service on Embedded Systems (내장형 시스템의 원활한 멀티미디어 서비스 지원을 위한 커널 수준의 RTP)

  • Sun Dong Guk;Kim Tae Woong;Kim Sung Jo
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.10 no.6
    • /
    • pp.460-471
    • /
    • 2004
  • Since the RTP is suitable for real-time data transmission in multimedia services like VoD, AoD, and VoIP, it has been adopted as a real-time transport protocol by RTSP, H.323, and SIP. Even though the RTP protocol stack for embedded systems has been in great need for efficient support of multimedia services, such a stack has not been developed yet. In this paper, we explain embeddedRTP which supports the RTP protocol stack at the kernel level so that it is suitable for embedded systems. Since embeddedRTP is designed to reside in the UBP module, existing applications which rely ell TCP/IP services can proceed the same as before, while applications which rely on the RTP protocol stack can request HTP services through embeddedRTp API. EmbeddedRTP stores transmitted RTP packets into per session packet buffer, using the packet's port number and multimedia session information. Communications between applications and embeddedRTP is performed through system calls and signal mechanisms. Additionally, embeddedRTP API makes it possible to develop applications more conveniently. Our performance test shows that packet-processing speed of embeddedRTP is about 7.5 times faster than that oi VCL RTP for multimedia streaming services on PDA in spite that its object code size is reduced about by 58% with respect to UCL RTP's.

A Study on Lambertian Color Segmentation and Canny Edge Detection Algorithms for Automatic Display Detection in CamCom (저속 카메라 통신용 자동 디스플레이 검출을 위한 Lambertian 색상 분할 및 Canny Edge Detection 알고리즘 연구)

  • Han, Jungdo;Said, Ngumanov;Vadim, Li;Cha, Jaesang
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.11 no.5
    • /
    • pp.615-622
    • /
    • 2018
  • Recent advancements in camera communication (CamCom) technology using visible light exploited to use display as an luminance source to modulate the data for visible light data communication. The existing display-CamCom techniques uses the selected region of interest based camera capturing approach to detect and decode the 2D color coded data on display screen. This is not effective way to do communicate when the user on mobility. This paper propose the automatic display detection using Lambertian color segmentation combined with canny edge detection algorithms for CamCom in order to avoid manual region of interest selection to establish communication link between display and camera. The automatic display detection methods fails using conventional edge detection algorithms when content changes dynamically in displays. In order to solve this problem lambertian color segmentation combined with canny edge detection algorithms are proposed to detect display automatically. This research analysed different algorithms on display edge recognition and measured the performance on rendering dynamically changing content with color code on display. The display detection rate is achieved around 96% using this proposed solutions.

Numerical Analysis of Grout Flow and Injection Pressure Affected by Joint Roughness and Aperture (절리 거칠기와 간극 변화에 따른 그라우트 유동과 주입압에 관한 수치해석적 연구)

  • Jeon, Ki-Hwan;Ryu, Dong-Woo;Kim, Hyung-Mok;Park, Eui-Seob;Song, Jae-Jun
    • Tunnel and Underground Space
    • /
    • v.20 no.2
    • /
    • pp.82-91
    • /
    • 2010
  • Grouting technology is one of the ground improvement methods used in water controlling and reinforcement of rock mass in underground structure construction. It is necessarily required to find out the characteristics of grout flow through discontinuities in a rock mass for an adequate grout design and performance assessment. Laminar flow is not always applicable in simulating a grout flow in a rock mass, since the rock joints usually have apertures at a micro-scale and the flow through these joints is affected by the joint roughness and the velocity profile of the flow changes partially near the roughness. Thus, the influence of joint roughness and aperture on the grout flow in rough rock joint was numerically investigated in this study. The commercial computational fluid dynamics code, FLUENT, was applied for this purpose. The computed results by embedded Herschel-Bulkley model and VOF (volume of fluid) model, which are applicable to simulate grout flow in a narrow rock joint that is filled with air and water, were well compared with that of analytical results and previously published laboratory test for the verification. The injection pressure required to keep constant injection rate of grout was calculated in a variety of Joint Roughness Coefficient (JRC) and aperture conditions, and the effect of joint roughness and aperture on grout flow were quantified.

Performance Evaluation of Hypersonic Turbojet Experimental Aircraft Using Integrated Numerical Simulation with Pre-cooled Turbojet Engine

  • Miyamoto, Hidemasa;Matsuo, Akiko;Kojima, Takayuki;Taguchi, Hideyuki
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.03a
    • /
    • pp.671-679
    • /
    • 2008
  • The effect of Pre-cooled Turbojet Engine installation and nozzle exhaust jet on Hypersonic Turbojet EXperimental aircraft(HYTEX aircraft) were investigated by three-dimensional numerical analyses to obtain aerodynamic characteristics of the aircraft during its in-flight condition. First, simulations of wind tunnel experiment using small scale model of the aircraft with and without the rectangular duct reproducing engine was performed at M=5.1 condition in order to validate the calculation code. Here, good agreements with experimental data were obtained regarding centerline wall pressures on the aircraft and aerodynamic coefficients of forces and moments acting on the aircraft. Next, full scale integrated analysis of the aircraft and the engine were conducted for flight Mach numbers of M=5.0, 4.0, 3.5, 3.0, and 2.0. Increasing the angle of attack $\alpha$ of the aircraft in M=5.0 flight increased the mass flow rate of the air captured at the intake due to pre-compression effect of the nose shockwave, also increasing the thrust obtained at the engine plug nozzle. Sufficient thrust for acceleration were obtained at $\alpha=3$ and 5 degrees. Increase of flight Mach number at $\alpha=0$ degrees resulted in decrease of mass flow rate captured at the engine intake, and thus decrease in thrust at the nozzle. The thrust was sufficient for acceleration at M=3.5 and lower cases. Lift force on the aircraft was increased by the integration of engine on the aircraft for all varying angles of attack or flight Mach numbers. However, the slope of lift increase when increasing flight Mach number showed decrease as flight Mach number reach to M=5.0, due to the separation shockwave at the upper surface of the aircraft. Pitch moment of the aircraft was not affected by the installation of the engines for all angles of attack at M=5.0 condition. In low Mach number cases at $\alpha=0$ degrees, installation of the engines increased the pitch moment compared to no engine configuration. Installation of the engines increased the frictional drag on the aircraft, and its percentage to the total drag ranged between 30-50% for varying angle of attack in M=5.0 flight.

  • PDF

A Full Scale Hydrodynamic Simulation of High Explosion Performance for Pyrotechnic Device (파이로테크닉 장치의 고폭 폭발성능 정밀 하이드로다이나믹 해석)

  • Kim, Bohoon;Yoh, Jai-ick
    • Journal of the Korea Society for Simulation
    • /
    • v.28 no.2
    • /
    • pp.1-14
    • /
    • 2019
  • A full scale hydrodynamic simulation that requires an accurate reproduction of shock-induced detonation was conducted for design of an energetic component system. A detailed hydrodynamic analysis SW was developed to validate the reactive flow model for predicting the shock propagation in a train configuration and to quantify the shock sensitivity of the energetic materials. The pyrotechnic device is composed of four main components, namely a donor unit (HNS+HMX), a bulkhead (STS), an acceptor explosive (RDX), and a propellant (BPN) for gas generation. The pressurized gases generated from the burning propellant were purged into a 10 cc release chamber for study of the inherent oscillatory flow induced by the interferences between shock and rarefaction waves. The pressure fluctuations measured from experiment and calculation were investigated to further validate the peculiar peak at specific characteristic frequency (${\omega}_c=8.3kHz$). In this paper, a step-by-step numerical description of detonation of high explosive components, deflagration of propellant component, and deformation of metal component is given in order to facilitate the proper implementation of the outlined formulation into a shock physics code for a full scale hydrodynamic simulation of the energetic component system.

A Study on Classification of Variant Malware Family Based on ResNet-Variational AutoEncoder (ResNet-Variational AutoEncoder기반 변종 악성코드 패밀리 분류 연구)

  • Lee, Young-jeon;Han, Myung-Mook
    • Journal of Internet Computing and Services
    • /
    • v.22 no.2
    • /
    • pp.1-9
    • /
    • 2021
  • Traditionally, most malicious codes have been analyzed using feature information extracted by domain experts. However, this feature-based analysis method depends on the analyst's capabilities and has limitations in detecting variant malicious codes that have modified existing malicious codes. In this study, we propose a ResNet-Variational AutoEncder-based variant malware classification method that can classify a family of variant malware without domain expert intervention. The Variational AutoEncoder network has the characteristics of creating new data within a normal distribution and understanding the characteristics of the data well in the learning process of training data provided as input values. In this study, important features of malicious code could be extracted by extracting latent variables in the learning process of Variational AutoEncoder. In addition, transfer learning was performed to better learn the characteristics of the training data and increase the efficiency of learning. The learning parameters of the ResNet-152 model pre-trained with the ImageNet Dataset were transferred to the learning parameters of the Encoder Network. The ResNet-Variational AutoEncoder that performed transfer learning showed higher performance than the existing Variational AutoEncoder and provided learning efficiency. Meanwhile, an ensemble model, Stacking Classifier, was used as a method for classifying variant malicious codes. As a result of learning the Stacking Classifier based on the characteristic data of the variant malware extracted by the Encoder Network of the ResNet-VAE model, an accuracy of 98.66% and an F1-Score of 98.68 were obtained.

Hi, KIA! Classifying Emotional States from Wake-up Words Using Machine Learning (Hi, KIA! 기계 학습을 이용한 기동어 기반 감성 분류)

  • Kim, Taesu;Kim, Yeongwoo;Kim, Keunhyeong;Kim, Chul Min;Jun, Hyung Seok;Suk, Hyeon-Jeong
    • Science of Emotion and Sensibility
    • /
    • v.24 no.1
    • /
    • pp.91-104
    • /
    • 2021
  • This study explored users' emotional states identified from the wake-up words -"Hi, KIA!"- using a machine learning algorithm considering the user interface of passenger cars' voice. We targeted four emotional states, namely, excited, angry, desperate, and neutral, and created a total of 12 emotional scenarios in the context of car driving. Nine college students participated and recorded sentences as guided in the visualized scenario. The wake-up words were extracted from whole sentences, resulting in two data sets. We used the soundgen package and svmRadial method of caret package in open source-based R code to collect acoustic features of the recorded voices and performed machine learning-based analysis to determine the predictability of the modeled algorithm. We compared the accuracy of wake-up words (60.19%: 22%~81%) with that of whole sentences (41.51%) for all nine participants in relation to the four emotional categories. Accuracy and sensitivity performance of individual differences were noticeable, while the selected features were relatively constant. This study provides empirical evidence regarding the potential application of the wake-up words in the practice of emotion-driven user experience in communication between users and the artificial intelligence system.

Development and Validation of the GPU-based 3D Dynamic Analysis Code for Simulating Rock Fracturing Subjected to Impact Loading (충격 하중 시 암석의 파괴거동해석을 위한 GPGPU 기반 3차원 동적해석기법의 개발과 검증 연구)

  • Min, Gyeong-Jo;Fukuda, Daisuke;Oh, Se-Wook;Cho, Sang-Ho
    • Explosives and Blasting
    • /
    • v.39 no.2
    • /
    • pp.1-14
    • /
    • 2021
  • Recently, with the development of high-performance processing devices such as GPGPU, a three-dimensional dynamic analysis technique that can replace expensive rock material impact tests has been actively developed in the defense and aerospace fields. Experimentally observing or measuring fracture processes occurring in rocks subjected to high impact loads, such as blasting and earth penetration of small-diameter missiles, are difficult due to the inhomogeneity and opacity of rock materials. In this study, a three-dimensional dynamic fracture process analysis technique (3D-DFPA) was developed to simulate the fracture behavior of rocks due to impact. In order to improve the operation speed, an algorithm capable of GPGPU operation was developed for explicit analysis and contact element search. To verify the proposed dynamic fracture process analysis technique, the dynamic fracture toughness tests of the Straight Notched Disk Bending (SNDB) limestone samples were simulated and the propagation of the reflection and transmission of the stress waves at the rock-impact bar interfaces and the fracture process of the rock samples were compared. The dynamic load tests for the SNDB sample applied a Pulse Shape controlled Split Hopkinson presure bar (PS-SHPB) that can control the waveform of the incident stress wave, the stress state, and the fracture process of the rock models were analyzed with experimental results.