• Title/Summary/Keyword: Code modifications

Search Result 85, Processing Time 0.018 seconds

HSPF-Paddy Development for Simulating Pollutant Loadings from Paddy Fields

  • Jeon, Ji-Hong;Yoon, Chun G.;Jung, Kwang-Wook;Jang, Jae-Ho
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.47 no.7
    • /
    • pp.57-66
    • /
    • 2005
  • The Hydrological Simulation Program - FORTRAN (HSPF) was modified to simulate nonpoint pollutant loadings from paddy fields using a field experimental data collected during 2001-2002. The concept of a 'dike height' was added in a modified HSPF code, named HSPF-Paddy, to consider the function of retaining water by a weir at the field outlet. The effect of fertilization on the variances of nutrients on the soil surface and shallow soil layer was described mathematically with a Dirac delta function (or first-order kinetics). As confirmed through model verification, the HSPF-Paddy modifications were shown to represent the function of retaining water, varied ponded water, and surface runoff by forced drain during both rainy and non-rainy seasons and reasonably predicted the water balance and nutrients behavior in paddy fields. It is a distributed watershed model which, with the paddy modifications, can now simulate nonpoint pollutant loadings where paddy fields are dominant, and it can be used to evaluate the effects of paddy fields on the water quality at a basin scale, and assess the impacts of proposed BMPs applied to paddy fields.

Numerical Simulation of Air Flow and Gas Dispersion around Obstacles

  • Nguyen The-Due;Park Warn-Gyu;Duong Ngoe-Hai
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.253-254
    • /
    • 2003
  • Computations of the mean and turbulence flows over three-dimensional hill of conical shape have implemented. Beside the standard ${\kappa}-{\varepsilon}$ , two other modifications proposed by Detering & Etling and Duynkerke for atmospheric applications were also considered. These predictions were compared with the data of a wind tunnel experiment. From the comparison, it was concluded that all three models predict the mean flow velocities equally well while only the Duynkerke's model accurately predicts the turbulence data statistics. It also concluded that there are large discrepancies between model predictions and the measurements near the ground surface. The flow field, which was obtained by using the Duynkerke's modification, was used to simulate gas dispersion from an upwind source. The calculation results are verified based on the measurement data. Modifications of the turbulent Schmidt number were carried out in order to match the measured results. The code was used to investigate the influence of the recirculation zone behind a building of cubical shape on the transport and dispersion of pollutant. For a stack behind and near the obstacle, some conclusions about the effect of the stack height and stack location were derived.

  • PDF

Numerical Simulation of Air Flow and Gas Dispersion around Obstacles

  • Nguyen The-Duc;Duong Ngoc-Hai;Park Wam-Gyu
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2003.08a
    • /
    • pp.144-151
    • /
    • 2003
  • Computations of the mean and turbulence flows over three-dimensional hill of conical shape have implemented. Beside the standard $\kappa-\epsilon$, two other modifications proposed by Detering & Etling and Duynkerke for atmospheric applications were also considered. These predictions were compared with the data of a wind tunnel experiment. From the comparison, it was concluded that all three models predict the mean flow velocities equally well while only the Duynkerke's model accurately predicts the turbulence data statistics. It also concluded that there are large discrepancies between model predictions and the measurements near the ground surface. The flow field, which was obtained by using the Duynkerke's modification, was used to simulate gas dispersion from an upwind source. The calculation results are verified based on the measurement data. Modifications of the turbulent Schmidt number were carried out in order to match the measured results. The code was used to investigate the influence of the recirculation zone behind a building of cubical shape on the transport and dispersion of pollutant. For a stack behind and near the obstacle, some conclusions about the effect of the stack height and stack location were derive

  • PDF

On the Retesting Methodology and Reusing Test Cases for Software Maintenance (소프트웨어 유지보수를 위한 리테스팅 방법론과 테스트 케이스 재사용에 관하여)

  • Hwang, Seon-Myeong;Jin, Yeong-Taek
    • The Transactions of the Korea Information Processing Society
    • /
    • v.2 no.1
    • /
    • pp.45-54
    • /
    • 1995
  • Retest arises when attemptint to validate code modifications. This paper proposes a retest methodology which explicitly defines the amount of retesting to be performed for any given code change. In order to minimize the objective function, we use the set/use matrix through analysis of data dependence as well as the connectivity, reachability, and test case/reference matrix through program control flow analysis. The value of objective function will give the minimum number of test cases necessary to assure the proposed methodology, we develope the retesting tool for generating mininum test cases based on the function.

  • PDF

Behaviour and design of structural steel pins

  • Bridge, R.Q.;Sukkar, T.;Hayward, I.G.;van Ommen, M.
    • Steel and Composite Structures
    • /
    • v.1 no.1
    • /
    • pp.97-110
    • /
    • 2001
  • Architectural steel structures with visible tension and compression members are becoming more prevalent as a popular form of construction that reflects the nature of the resistance to the applied loads. These members require the use of structural steel pins at their ends to ensure either axial tension or axial compression in the members. Structural pins have been used as a means of connection for centuries and it would appear that their behaviour is relatively well understood. However, the rules for the design of pins vary quite considerably from code to code and this has caused some confusion amongst consulting structural engineers operating internationally. To provide some insight into this problem, a comprehensive testing program has been carried to examine the influence of parameters such as pin diameter, material properties of the pin, thickness of the loading plates, material properties of the loading plates and the distance of the pin to the edge of the loading plates. The modes of failure have been carefully examined. Based on this study, modifications to current design procedures are proposed that properly take into account the different possible modes of failure.

IMPLEMENTATION OF A SECOND-ORDER INTERPOLATION SCHEME FOR THE CONVECTIVE TERMS OF A SEMI-IMPLICIT TWO-PHASE FLOW ANALYSIS SOLVER (물-기체 2상 유동 해석을 위한 Semi-Implicit 방법의 대류항에 대한 2차 정확도 확장)

  • Cho, H.K.;Lee, H.D.;Park, I.K.;Jeong, J.J.
    • Journal of computational fluids engineering
    • /
    • v.14 no.4
    • /
    • pp.13-22
    • /
    • 2009
  • A two-phase (gas and liquid) flow analysis solver, named CUPID, has been developed for a realistic simulation of transient two-phase flows in light water nuclear reactor components. In the CUPID solver, a two-fluid three-field model is adopted and the governing equations are solved on unstructured grids for flow analyses in complicated geometries. For the numerical solution scheme, the semi-implicit method of the RELAP5 code, which has been proved to be very stable and accurate for most practical applications of nuclear thermal hydraulics, was used with some modifications for an application to unstructured non-staggered grids. This paper is concerned with the effects of interpolation schemes on the simulation of two-phase flows. In order to stabilize a numerical solution and assure a high numerical accuracy, the second-order upwind scheme is implemented into the CUPID code in the present paper. Some numerical tests have been performed with the implemented scheme and the comparison results between the second-order and first-order upwind schemes are introduced in the present paper. The comparison results among the two interpolation schemes and either the exact solutions or the mesh convergence studies showed the reduced numerical diffusion with the second-order scheme.

Finite element analysis of shear-critical reinforced concrete walls

  • Kazaz, Ilker
    • Computers and Concrete
    • /
    • v.8 no.2
    • /
    • pp.143-162
    • /
    • 2011
  • Advanced material models for concrete are not widely available in general purpose finite element codes. Parameters to define them complicate the implementation because they are case sensitive. In addition to this, their validity under severe shear condition has not been verified. In this article, simple engineering plasticity material models available in a commercial finite element code are used to demonstrate that complicated shear behavior can be calculated with reasonable accuracy. For this purpose dynamic response of a squat shear wall that had been tested on a shaking table as part of an experimental program conducted in Japan is analyzed. Both the finite element and material aspects of the modeling are examined. A corrective artifice for general engineering plasticity models to account for shear effects in concrete is developed. The results of modifications in modeling the concrete in compression are evaluated and compared with experimental response quantities.

Genome wide identification of Staufen2-bound mRNAs in embryonic rat brains

  • Maher-Laporte, Marjolaine;DesGroseillers, Luc
    • BMB Reports
    • /
    • v.43 no.5
    • /
    • pp.344-348
    • /
    • 2010
  • Messenger ribonucleoprotein particles (mRNPs) are used to transport mRNAs along neuronal dendrites to their site of translation. Staufen2 is an mRNA-binding protein expressed in the cell bodies and cellular processes of different brain cells. It is notably involved in the transport of dendritic mRNAs along microtubules. Its knockdown expression was shown to change spine morphology and impair synaptic functions. However, the identity of Staufen2-bound mRNAs in brain cells is still completely unknown. As a mean to identify these mRNAs, we immunoprecipitated Staufen2-containing mRNPs from embryonic rat brains and used a genome wide approach to identify Staufen2-associated mRNAs. The genome wide approach identified 1780 mRNAs in Staufen2-containing mRNPs that code for proteins involved in cellular processes such as post-translational protein modifications, RNA metabolism, intracellular transport and translation. These results represent an additional and important step in the characterization of Staufen2- mediated neuronal functions in rat brains.

A Regression Test Selection and Prioritization Technique

  • Malhotra, Ruchika;Kaur, Arvinder;Singh, Yogesh
    • Journal of Information Processing Systems
    • /
    • v.6 no.2
    • /
    • pp.235-252
    • /
    • 2010
  • Regression testing is a very costly process performed primarily as a software maintenance activity. It is the process of retesting the modified parts of the software and ensuring that no new errors have been introduced into previously tested source code due to these modifications. A regression test selection technique selects an appropriate number of test cases from a test suite that might expose a fault in the modified program. In this paper, we propose both a regression test selection and prioritization technique. We implemented our regression test selection technique and demonstrated in two case studies that our technique is effective regarding selecting and prioritizing test cases. The results show that our technique may significantly reduce the number of test cases and thus the cost and resources for performing regression testing on modified software.

Optimum Shape Design of Engine Mounting Rubber Using a Parametric Approach (형상 파라미터화 방법을 이용한 엔진 마운트용 고무의 형상 최적화)

  • Kim, J.J.;Kim, H.Y.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.2 no.2
    • /
    • pp.33-41
    • /
    • 1994
  • The procedure to design the engine mount is briefly discussed and the optimum shape design process of engine mounting rubber using a parametric approach is suggested. An optimization code is developed to determine the shape to meet the stiffness requirements of engine mounts, coupled with the commercial nonlinear finite element program ABAQUS. A bush type engine mount used in a current passenger car is chosen for an application model. The shape from the result of the parameter optimization is determined as a final model with some modifications. The shape and stiffness of each optimization stage are shown and the stiffness of the optimized model along the principal direction is compared with the design specification of the current model. Finally, an overview of the current status and future works for the engine mount design are discussed.

  • PDF