• Title/Summary/Keyword: Code formulas

Search Result 56, Processing Time 0.02 seconds

Response modification factor of mixed structures

  • Fanaie, Nader;Shamlou, Shahab O.
    • Steel and Composite Structures
    • /
    • v.19 no.6
    • /
    • pp.1449-1466
    • /
    • 2015
  • Mixed structures consist of two parts: a lower part and an upper part. The lower part is usually made of concrete while the upper part is made of steel. Analyzing these structures is complicated and code-based design of them has many associated problems. In this research, the seismic behavior of mixed structures which have reinforced concrete frames and shear walls in their lower storeys and steel frames with bracing in their upper storeys were studied. For this purpose, seventeen structures in three groups of 5, 9 and 15 storey structures with different numbers of concrete and steel storeys were designed. Static pushover analysis, linear dynamic analysis and incremental dynamic analysis (IDA) using 15 earthquake records were performed by OpenSees software. Seismic parameters such as period, response modification factor and ductility factor were then obtained for the mixed (hybrid) structures using more than 4600 nonlinear dynamic analysis and used in the regression analysis for achieving proper formula. Finally, some formulas, effective in designing such structures, are presented for the mentioned parameters. According to the results obtained from this research, the response modification factor values of mixed structures are lower compared to those of steel or concrete ones with the same heights. This fact might be due to the irregularities of stiffness, mass, etc., at different heights of the structure. It should be mentioned that for the first time, the performance and seismic response of such structures were studied against real earthquake accelerations using nonlinear dynamic analysis, andresponse modification factor was obtained by IDA.

Monte Carlo Simulation for Particle Behavior of Recycling Neutrals in a Tokamak Diverter Region

  • Kim, Deok-Kyu;Hong, Sang-Hee;Kihak Im
    • Nuclear Engineering and Technology
    • /
    • v.29 no.6
    • /
    • pp.459-467
    • /
    • 1997
  • The steady-state behavior of recycling neutral atoms in a tokamak edge region has been analyzed through a two-dimensional Monte Carlo simulation. A particle tracking algorithm used in earlier research on the neutral particle transport is applied to this Monte Carlo simulation in order to perform more accurate calculations with the EDGETRAN code which was previously developed for a two-dimensional edge plasma transport in the authors' laboratory. The physical model of neutral recycling includes charge-exchange and ionization interactions between plasmas and neutral atoms. The reflection processes of incident particles on the device wall are described by empirical formulas. Calculations for density, energy, and velocity distributions of neutral deuterium-tritium atoms have been carried out for a medium-sized tokamak with a double-null configuration based on the KT-2 conceptual design. The input plasma parameters such as plasma density, ion and electron temperatures, and ion fluid velocity are provided from the EDGETRAN calculations. As a result of the present numerical analysis, it is noticed that a significant drop of the neutral atom density appears in the region of high plasma density and that the similar distribution of neutral energy to that of plasma ions is present as frequently reported in other studies. Relations between edge plasma conditions and the neutral recycling behavior are discussed from the numerical results obtained herein.

  • PDF

Behavior and design of perforated steel storage rack columns under axial compression

  • El Kadi, Bassel;Kiymaz, G.
    • Steel and Composite Structures
    • /
    • v.18 no.5
    • /
    • pp.1259-1277
    • /
    • 2015
  • The present study is focused on the behavior and design of perforated steel storage rack columns under axial compression. These columns may exhibit different types of behavior and levels of strength owing to their peculiar features including their complex cross-section forms and perforations along the member. In the present codes of practice, the design of these columns is carried out using analytical formulas which are supported by experimental tests described in the relevant code document. Recently proposed analytical approaches are used to estimate the load carrying capacity of axially compressed steel storage rack columns. Experimental and numerical studies were carried out to verify the proposed approaches. The experimental study includes compression tests done on members of different lengths, but of the same cross-section. A comparison between the analytical and the experimental results is presented to identify the accuracy of the recently proposed analytical approaches. The proposed approach includes modifications in the Direct Strength Method to include the effects of perforations (the so-called reduced thickness approach). CUFSM and CUTWP software programs are used to calculate the elastic buckling parameters of the studied members. Results from experimental and analytical studies compared very well. This indicates the validity of the recently proposed approaches for predicting the ultimate strength of steel storage rack columns.

Analysis on condensation heat transfer and pressure drop to develop design program for plate heat exchangers (판형열교환기 설계프로그램 개발을 위한 응축열전달 및 압력강하 분석)

  • Ko, Jea-Hyun;Song, Young-Ho;Park, Kweon-Ha
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.38 no.4
    • /
    • pp.376-382
    • /
    • 2014
  • The purpose of this study is to get the formulas of condensation heat transfer coefficient and pressure drop about the water to develop design program for plate type heat exchangers. The single phase flow of cold side was calculated with the correlation of Ko. Condensation heat transfer coefficient model proposed by Annaiev was used and Lockhart model was used to analyze the pressure drop. The calculation algorithm was proposed to calculate heat transfer rate and pressure drop simultaneously. The prediction errors remained within 20% compared to the commercial code in the working range of the plate heat exchangers.

Calculation of Horizontal Shear Strength in Reinforced Concrete Composite Beams (철근콘크리트 합성보의 수평전단강도 산정)

  • Kim, Min-Joong;Lee, Gi-Yeol
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.12
    • /
    • pp.772-781
    • /
    • 2020
  • A direct shear member resists external forces through the shear transfer of reinforcing bars placed at the concrete interface. The current concrete structural design code uses empirical formulas based on the shear friction analogy, which is applied to the horizontal shear of concrete composite beams. However, in the case of a member with a large amount of reinforcing bars, the shear strength obtained through the empirical formula is lower than the measured value. In this paper, the limit state of newly constructed composite beams on an existing concrete girder is defined using stress field theory, and material constitutive laws are applied to gain horizontal shear strength while considering the tension-stiffening and softening effects of concrete struts. A simplified method of calculating the shear strength is proposed, which was validated by comparing it with the related design code provisions. As a result, it was confirmed that the method generally shows a similar tendency to the experimental results when the shear reinforcing bar yields, unlike the regulations of the design code, where differences in the predicted value of shear strength occur according to the shear reinforcement ratio.

Mathematics, Art and 3D-Printing in STEAM Education (수학과 예술을 3D 프린팅으로 연결하는 융합인재교육)

  • Lee, Sang-Gu;Lee, Jae-Yoon;Park, Kyung-Eun;Lee, Jae Hwa;Ahn, Seung-Chul
    • Communications of Mathematical Education
    • /
    • v.29 no.1
    • /
    • pp.35-49
    • /
    • 2015
  • 3D-Printing is one of the most innovative technologies that will be widely used in the 21st century. 3D-Printing also serves as an indispensable tool in STEAM education. In this article, we introduce what we have done in our mathematical modeling class in Uni. and recent R&E project under the support of Korean Foundation for the Advancement of Science and Creativity. We planned a model of STEAM education originating from our wish to make tangible models that use mathematical formulas to express the natural beauty of an object. We used a free, open-source software, Sage, to simulate these models online. Then, we created a program that generates a .STL file from these 3D images. This model can help students understand the natural beauty inherent in mathematics and use formulas and technology tools to simulate models in 3D. Finally, we were able to help students to create their own. STL files through a website we developed by adding Sage code into a Sage notebook. Then students can make and hold a 3D object of their very own. This process shows the possibility that mathematics, art and 3D-Printing can be effectively used to achieve the goals of STEAM education.

Ultimate Resisting Capacity of Axially Loaded Circular Concrete-Filled Steel Tube Columns (축력이 재하된 원형 콘크리트 충전강관 기둥의 최대 저항능력)

  • Kwak, Hyo-Gyoung;Kwak, Ji-Hyun
    • Journal of the Korea Concrete Institute
    • /
    • v.24 no.4
    • /
    • pp.423-433
    • /
    • 2012
  • The axial load on the concrete-filled steel tube (CFT) column produces confinement stress, which enhances strength of the core concrete. The amount of strength increase in concrete depends on the magnitude of produced confinement stress. From nonlinear analyses, the ultimate resisting capacity of the CFT columns subjected to axial loads was calculated. Nonlinear material properties such as Poisson's ratio and stress-strain relation were considered in the suggested model, and the maximum confining stress was obtained by multi axial yield criteria of the steel tube. This proposed model was verified by comparing the analytical results with experimental results. Then, regression analyses were conducted to predict the maximum confining stress according to D/t ratio and material properties without rigorous structural analysis. To ensure the validity of the suggested regression formula, various empirical formulas and Eurocode4 design code were compared.

Structural Analysis of the Aluminum Extrusion Plate with Truss-Core (트러스 코어 헝상을 갖는 알루미늄 압출재의 구조 해석)

  • 장창두;이병삼;하윤석;김호경;송하철;문형석
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.16 no.2
    • /
    • pp.133-140
    • /
    • 2003
  • The sandwich plate has been widely used as an efficient structural member because it has high strength-to-weight and high stiffness-to-weight ratios. To properly design the aluminum extrusion plate , it is necessary to analyze structural behaviors of the extrusions, however, the aluminum extrusions have been rarely studied until now. In the optimization process through numerous iterative calculations, finite element analysis of the sandwich plate with hollow core section requires a considerable amount of computation time and cost. In this paper, the aluminum extrusion plate with truss-core is transformed into an equivalent homogeneous orthotropic plate with appropriate elastic constants. The procedure to evaluate accurate equivalent elastic constants is also established. Using these elastic constants, simple theoretical formulas of the stresses and deflection are proposed in case of the simply-supported orthotropic thick plate under uniform pressure. Through the comparison with the results by commercial FEM code(ANSYS), it is verified that the proposed simpified formula has a good efficiency and accuracy.

Evaluation of the effect of mechanical deformation on beam isocenter properties of the SC200 scanning beam delivery system

  • Wang, Ming;Zheng, Jinxing;Song, Yuntao;Li, Ming;Zeng, Xianhu
    • Nuclear Engineering and Technology
    • /
    • v.52 no.9
    • /
    • pp.2064-2071
    • /
    • 2020
  • For proton pencil beam scanning (PBS) technology, the accuracy of the dose distribution in a patient is sensitive to the properties of the incident beam. However, mechanical deformation of the proton therapy facility may occur, and this could be an important factor affecting the proton dose distribution in patients. In this paper, we investigated the effect of deformation on an SC200 proton facility's beam isocenter properties. First, mechanical deformation of the PBS nozzle, L-shape plate, and gantry were simulated using a Finite Element code, ANSYS. Then, the impact of the mechanical deformation on the beam's isocenter properties was evaluated using empirical formulas. In addition, we considered the simplest case that could affect the properties of the incident beam (i.e. if only the bending magnet (BG3) has an error in its mounting alignment), and the effect of the beam optics offset on the isocenter characteristics was evaluated. The results showed that the deformation of the beam position in the X and Y direction was less than 0.27 mm, which meets the structural design requirements. Compared to the mechanical deformation of the L-shape plate, the deformation of the gantry had more influence on the beam's isocenter properties. When the error in the mounting alignment of the BG3 is equal to or more than 0.3 mm, the beam deformation at the isocenter exceeds the maximum accepted deformation limits. Generally speaking, for the current design of the SC200 scanning beam delivery system, the effects of mechanical deformation meet the maximum accepted beam deformation limits. In order to further study the effect of the incident beam optics on the isocenter properties, a fine-scale Monte Carlo model including factors relating to the PBS nozzle and the BG3 should be developed in future research.

Energy Loss Coefficient of Waves Considering Thickness of Perforated Wall (유공벽의 두께를 고려한 파의 에너지손실계수)

  • Yoon, Sung-Bum;Lee, Jong-In;Nam, Doo-Hyun;Kim, Seon-Hyung
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.18 no.4
    • /
    • pp.321-328
    • /
    • 2006
  • In the present study extensisve numerical experiments are conducted using the CFD code, FLUENT, to investigate the energy dissipation due to perforated walls for various wall-thickness and flow conditions. A new empirical formula for energy loss coefficient considering the effect of the thickness of perforated wall is obtained based on the results of computational experiments. It is found that the energy loss coefficient decreases as the wall-thickness increases and the maximum coefficient reduction reaches upto 40% of the value calculated using the conventional formulas for the sharp-crested orifice. To check the validity of the new formula the reflection coefficient of waves due to perforated wall is evaluated and compared with the results of existing theories and hydraulic experiments. The result shows that the new formula is superior to the conventional ones.