• Title/Summary/Keyword: Code Phase

Search Result 883, Processing Time 0.024 seconds

Spectral Efficiency 0f Symmetric Balance Incomplete Block Design Codes (Symmetric Balance Incomplete Block Design Code의 Spectral Efficiency)

  • Jhee, Yoon Kyoo
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.1
    • /
    • pp.117-123
    • /
    • 2013
  • By calculating the spectral efficiency of symmetric balance incomplete block design(BIBD) codes satisfying BER=$10^{-9}$, it can be found that ideal BIBD code design with m=2 and various q's is effective when effective power is high($P_{sr}=-10$ dBm). But BIBD code design with q > 2 and various m's can be effective when effective power is low($P_{sr}=-25$ dBm).

The Recording Time Schedule in the Phase-Code Multiplexing System (위상부호 홀로그램 중첩 시스템에서 홀로그램의 중첩저장 및 복원을 위한 기록시간 분배)

  • 김유현;손승대;이연호
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.40 no.2
    • /
    • pp.88-97
    • /
    • 2003
  • Computer simulations of the recording and reading of holograms in an 8-bit phase-code multiplexing system are presented. From the computer simulation each recording time of eight holograms is obtained such that the strength of restored holograms is same. An analytic formula to predict the recording times is derived by fitting the formula to the computer simulation data. It is found that our analytic formula can predict the hologram recording time not only in 8-bit system but also in 16-bit and 32-bit systems in an error less than $\pm$8.4%. Optical experiments are also performed in a 4-bit phase code-multiplexing system. It is found that the strength of the restored holograms is more uniform compared with conventional methods.

Numerical study on thermal-hydraulics of external reactor vessel cooling in high-power reactor using MARS-KS1.5 code: CFD-aided estimation of natural circulation flow rate

  • Song, Min Seop;Park, Il Woong;Kim, Eung Soo;Lee, Yeon-Gun
    • Nuclear Engineering and Technology
    • /
    • v.54 no.1
    • /
    • pp.72-83
    • /
    • 2022
  • This paper presents a numerical investigation of two-phase natural circulation flows established when external reactor vessel cooling is applied to a severe accident of the APR1400 reactor for the in-vessel retention of the core melt. The coolability limit due to external reactor vessel cooling is associated with the natural circulation flow rate around the lower head of the reactor vessel. For an elaborate prediction of the natural circulation flow rate using a thermal-hydraulic system code, MARS-KS1.5, a three-dimensional computational fluid dynamics (CFD) simulation is conducted to estimate the flow rate and pressure distribution of a liquid-state coolant at the brink of significant void generation. The CFD calculation results are used to determine the loss coefficient at major flow junctions, where substantial pressure losses are expected, in the nodalization scheme of the MARS-KS code such that the single-phase flow rate is the same as that predicted via CFD simulations. Subsequently, the MARS-KS analysis is performed for the two-phase natural circulation regime, and the transient behavior of the main thermal-hydraulic variables is investigated.

Encryption and decryption of binary data with 2-step phase-shifting digital interferometry (2-step 위상 천이 디지털 간섭계를 이용한 이진 데이터 암호화 및 복호화)

  • Byeon, Hyeon-Jung;Gil, Sang-Geun;Ha, Seung-Ho
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 2006.02a
    • /
    • pp.335-336
    • /
    • 2006
  • We propose a method of encryption and decryption of binary data using 2-step phase-shifting digital interferometry. This technique reduces the number of interferograms in the phase-shifting interferometry. The binary data has been expressed with random code and random phase. We remove the dc-term of the phase-shifting digital interferogram to restore the original binary data. Simulation results shows that the proposed technique can be used for binary data encryption and decryption.

  • PDF

Numerical Analysis of Icing and Condensation Mechanism sing Enthalpy Method (엔탈피방법을 이용한 결빙 및 응축 메커니즘 해석)

  • Kim, S.H.;Heo, M.W.;Park, W.G.;Jung, S.H.
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.2901-2906
    • /
    • 2007
  • A solver for icing and condensation of water has been developed. The phase change process was solved by the enthalpy method. For the code validation, the temperature and the phase change from water to ice of the driven cavity were calculated. Also, the melting process of the frost on the windshield glass of an automobile has been simulated. The calculation showed a good agreement with analytical solution and other numerical results. Using the present validated code, the condensation of water vapor has been first tried. The computed results provided some physical features of condensation phenomena even though experimental data and other numerical data were not available. For future work, it is recommended to throughly investigate the effects of boundary conditions on the solution.

  • PDF

A Study on Numerical Modeling of Turbulent Gas-Particle Flows in a rectangular chamber Using Eulerian-Eulerian Method (오일러리언 접근법을 이용한 기류제트에 의한 가스-입자 2상 난류 유동특성 모델링 연구)

  • Kim, Tae-Kuk;Min, Dong-Ho;Yoon, Kyung-Beom;Chang, Hee-Chul
    • 한국연소학회:학술대회논문집
    • /
    • 2006.10a
    • /
    • pp.202-208
    • /
    • 2006
  • The purpose of this research is to model numerically the turbulent gas-particle flows in a rectangular chamber using Eulerian-Eulerian Method. A computer code using the ${\kappa}-{\varepsilon}-Ap$ two-phase turbulence model is developed for the numerical study. This code and the Eulerian multiphase model in FLUENT were used for the numerical simulations of the two-phase flow in a rectangular chamber. The numerical results calculated by the two different turbulent gas-particle codes have shown that the ${\kappa}-{\varepsilon}-Ap$ model results in a stronger diffusion of the flow momentum in the gas-particle turbulence interaction than the Eulerian multiphase model in FLUENT.

  • PDF

CURRENT STATUS OF THERMAL/HYDRAULIC FEASIBILITY PROJECT FOR REDUCED- MODERATION WATER REACTOR (2) - DEVELOPMENT OF TWO-PHASE FLOW SIMULATION CODE WITH ADVANCED INTERFACE TRACKING METHOD

  • Yoshida, Hiroyuki;Tamai, Hidesada;Ohnuki, Akira;Takase, Kazuyuki;Akimoto, Hajime
    • Nuclear Engineering and Technology
    • /
    • v.38 no.2
    • /
    • pp.119-128
    • /
    • 2006
  • We start to develop a predictable technology for thermal-hydraulic performance of the RMWR core using an advanced numerical simulation technology. As a part of this technology development, we are developing the advanced interface tracking method to improve the conservation of volume of fluid. The present paper describes a part of the development of the twophase flow simulation code TPFIT with the advanced interface tracking method. The numerical results applied to large-scale water-vapor two-phase flow in tight lattice rod bundles are shown and compared with experimental results. In the results of numerical simulation, a tendency of the predicted void fraction distribution in horizontal plane agreed with the measured values obtained by the advanced neutron radiography technique including the bridge formation of the liquid at the position of adjacent fuel rods where an interval is the narrowest.

Numerical Study of Defrost Phenomenon of Automobile Windshield (자동차 전방 유리면 성에 전산 해빙해석)

  • 박만성;황지은;박원규;장기룡
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.2
    • /
    • pp.157-163
    • /
    • 2003
  • This work was undertaken for the numerical analysis of defrosting phenomena of automobile windshield. To analyze the defrost, the flow and temperature field of cabin interior, heat transfer through the windshield glass, and phase change of the frost should be analyzed simultaneously. The flow field was obtained by solving the 3-D unsteady Navier-Stokes equation and the temperature field was computed by energy equation. The phase-change process of Stefan problem was solved by enthalpy method. For code validation, the temperature field of the driven cavity was calculated. The result of calculation shows a good agreement with the other numerical results. Then, the present code was applied to the defrosting analysis of a real automobile and, also, a good agreement with experiment was obtained.

DS/CDMA Signature Sequences for 4-phase Signaling (4-위상 신호 방식에 알맞은 직접수열 부호분할 다중접속 서명수열)

  • Park So Ryoung;Song Iickho
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.5C
    • /
    • pp.313-319
    • /
    • 2005
  • In this paper, we propose a class of polyphase signature sequences, whose general odd correlation properties are useful for 4-phase signaling systems. The performance of the direct sequence code division multiple access (DS/CDMA) systems using the proposed sequences is compared with that using binary pseudo-noise sequences. The performance of the system using the proposed sequence is shown to be better than that using other conventional sequences both from the worst-case analysis and bit error rate simulations.

Even-phase ZCD codes for MAI Cancelled DS-CDMA Systems

  • Cha, Jae-sang
    • Proceedings of the IEEK Conference
    • /
    • 2002.07c
    • /
    • pp.1952-1955
    • /
    • 2002
  • Multiple access interference (MAI) and multi path interference(MPI) degrades the system performance in the DS-CDMA(direct-sequence code-division multiple- access)systems .0 this paper, a generalized construction method fer 2$\^$n/(n=1,2,3) phase preferred pairs(PP) with zero-correlation duration (ZCD) of (0.5N+1) chips is proposed. 2$\^$n/(n=1,2,3) phase ZCD code sets with ZCD and enlarged family sizes are generated by carrying out a chip-shift operation of the preferred pairs . The properties of the proposed codes are effective for the cancellation of MAI and MPI in DS-CDMA Systems.

  • PDF