• Title/Summary/Keyword: Code Generator

Search Result 424, Processing Time 0.029 seconds

The MARS Simulation of the ATLAS Main Steam Line Break Experiment

  • Ha, Tae Wook;Yun, Byong Jo;Jeong, Jae Jun
    • Journal of Energy Engineering
    • /
    • v.23 no.4
    • /
    • pp.112-122
    • /
    • 2014
  • A main steam line break (MSLB) test at the ATLAS facility was simulated using the best-estimate thermal-hydraulic system code, MARS-KS. This has been performed as an activity at the third domestic standard problem for code benchmark (DSP-03) that has been organized by Korea Atomic Energy Research Institute (KAERI). The results of the MSLB experiment and the MARS input data prepared for the previous DSP-02 using the ATLAS facility were provided to participants. The preliminary MSLB simulation using the base input data, however, showed unphysical results in the primary-to-secondary heat transfer. To resolve the problems, some improvements were implemented in the MARS input modelling. These include the use of fine meshes for the bottom region of the steam generator secondary side and proper thermal-hydraulics calculation options. Other input model improvements in the heat loss and the flow restrictor models were also made and the results were investigated in detail. From the results of simulations, the limitations and further improvement areas of the MARS code were identified.

Loss of a Main Feedwater Pump Test Simulation Using KISPAC Computer Code

  • Jeong, Won-Sang;Sohn, Suk-Whun;Seo, Ho-Taek;Seo, Jong-Tae
    • Nuclear Engineering and Technology
    • /
    • v.28 no.3
    • /
    • pp.265-273
    • /
    • 1996
  • Among those tests performed during the Yonggwang Nuclear Power Plant Units 3 and 4 (YGN 3&4) Power Ascension Test period, the Loss of a Main Feedwater Pump test at l00% power is one of the major test which characterize the capability of YGN 3&4. In this event, one of the two normally operating main feedwater pumps is tripped resulting in a 50% reduction in the feedwater flow. Unless the NSSS and Turbine/Generator control systems actuate properly, the reactor will be tripped on low SG water level or high pressurizer pressure. The test performed at Unit 3 was successful by meeting all acceptance criteria, and the plant was stabilized at a reduced power level without reactor trip. The measured test data for the major plant parameters are compared with the predictions made by the KISPAC computer code, an updated best-estimate plant performance analysis code, to verify and validate its applicability. The comparison results showed good agreement in the magnitude as well as the trends of the major plant parameters. Therefore, the KISPAC code can be utilized for the best-estimate nuclear power plant design and simulation tool after a further verification using other plant test data.

  • PDF

Experimental investigation and validation of TASS/SMR-S code for single-phase and two-phase natural circulation tests with SMART-ITL facility

  • Bae, Hwang;Chun, Ji-Han;Yun, Eunkoo;Chung, Young-Jong;Lim, Sung-Won;Park, Hyun-Sik
    • Nuclear Engineering and Technology
    • /
    • v.54 no.2
    • /
    • pp.554-564
    • /
    • 2022
  • The natural circulation phenomena occurring in fully integrated nuclear reactors are associated with a unique formation mechanism. The phenomenon results from a structural feature of these reactors involving upward flow from the core, located in the central-bottom region of a single vessel, and downward flow to the steam generator in the annulus region. In this study, to understand the natural circulation in a single vessel involving a multi-layered flow path, single-phase and two-phase natural circulation tests were performed using the SMART-ITL facility, and validation analysis of the TASS/SMR-S code was performed by comparing the corresponding test results. Three single-phase natural circulation tests were sequentially conducted at 15%, 10%, and 5% of full-scaled core-power without RCP operation, following which a two-phase natural circulation test was successively conducted with an artificial discharge of coolant inventory. The simulation capability of the TASS/SMR-S code with respect to the natural circulation phenomena was validated against the test results, and somewhat conservative but reasonably comparative results in terms of overall thermalhydraulic behavior were shown.

FIV Characteristics of U-Tubes Due to Relocation of the Tube Supprot Plates (튜브 지지판 재배치에 따른 유체유발진동 특성 해석)

  • Kim, Hyung-Jin;Ryu, Ki-Wahn;Park, Chi-Yong
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.05a
    • /
    • pp.312-317
    • /
    • 2005
  • Fluid-elastic instability and turbulence excitation for an under developing steam generator are investigated numerically. The stability ratio and the amplitude of turbulence excitation are obtained by using the PIAT (Program for Integrity Assessment of Steam Generator Tube) code from the information on the thermal-hydraulic data of the steam generator. The aspect ratio, the ratio between the height of U-tube from the upper most tube support plate (h) and the width of two vertical portion of U-tube (w), is defined for geometric parameter study. Several aspect ratios with relocation of tube support plates are adopted to study the effects on the mode shapes and characteristics of flow-induced vibration. When the aspect ratio exceeds value of 1, most of the mode shapes at low frequency are generated at the top of U-tube. It makes very high value of the stability ratio and the amplitude of turbulent excitation as well. We can consider that the local mode shape at the upper side of U-tube will develop the wear phenomena between the tube and the anti-vibration bars such as vertical, horizontal, and diagonal strips. It turns out that the aspect ratio reveals very important parameter for the design stage of the steam generator. The appropriate value of the aspect ratio should be specified and applied.

  • PDF

Study on Combustion Gas Properties of a Fuel-Rich Gas Generator (연료 과농 가스발생기의 연소 가스 물성치에 관한 연구)

  • 서성현;최환석;한영민;김성구
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.34 no.10
    • /
    • pp.56-60
    • /
    • 2006
  • It is essential to predict thermodynamic properties of combustion gas with respect to a propellant mixture ratio for the development of a gas generator for a liquid rocket engine. The present study shows the temperature measurement of exit combustion gas as a function of a mixture ratio through the series of combustion tests of a fuel-rich gas generator with liquid oxygen and Jet A-1. The measurements of dynamic and static pressures, and combustion gas temperatures allowed the estimation of thermodynamic properties like a specific heat ratio, a gas constant, and a constant pressure specific heat of the combustion gas. The comparison of the experimental results with predictions made by interpolation parameters obtained from the modification of the chemical equilibrium code indicates that the interpolation method calibrated using the temperature measurements can be utilized as an effective tool for the initial design of a fuel-rich gas generator.

충돌형 가스발생기 탈설계점 연소시험

  • Kim, Seung-Han;Han, Yeung-Min;Seo, Seong-Hyeon;Moon, Il-Yoon;Lee, Kwang-Jin;Kim, Jong-Kyu;Seol, Woo-Seok
    • Aerospace Engineering and Technology
    • /
    • v.3 no.2
    • /
    • pp.81-90
    • /
    • 2004
  • This paper describes the results of combustion performance test of fuel-rich gas generator(GG) using LOx and kerosene as propellant at off-design conditions. The chamber pressure is thought to be a function of O/F ratio and total propellant mass flow rate. The test shows that the spatial temperature deviation at the exit of gas generator remains within 7.5K and that the average gas temperature at the exit is a function of propellant O/F ratio. The results of firing test of gas generator at off-design conditions, especially the relation between gas temperature and O/F ratio, can provide useful data for the design of future gas generator and for the development of low-O/F ratio reaction analysis code.

  • PDF

FIV Analysis of SG Tubes for Various TSP Locations (튜브 지지판 재배치에 따른 유체유발진동 특성 해석)

  • Kim, Hyung-Jin;Park, Chi-Yong;Park, Myoung-Ho;Ryu, Ki-Whan
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.15 no.9 s.102
    • /
    • pp.1009-1015
    • /
    • 2005
  • Fluid-elastic instability and turbulence excitation for an under developing steam generator are investigated numerically. The stability ratio and the amplitude of turbulence excitation are obtained by using the $PIAT^{(R)}$ (program for integrity assessment of steam generator tube) code from the information on the thermal-hydraulic data of the steam generator. The aspect ratio, the ratio between the height of U-tube from the upper most tube support Plate (h) and the width of two vertical portion of U-tube (w), is defined for geometric parameter study. Several aspect ratios with relocation of tube support plates are adopted to study the effects on the mode shapes and characteristics of flow-induced vibration. When the aspect ratio exceeds value of 1, most of the mode shapes at low frequency are generated at the top of U-tube. It makes very high value of the stability ratio and the amplitude of turbulent excitation as well. We can consider that the local mode shape at the upper side of U-tube will develop the wear phenomena between the tube and the anti-nitration bars such as vortical, horizontal, and diagonal strips. It turns out that the aspect ratio reveals very important parameter for the design stage of the steam generator. The appropriate value of the aspect ratio should be specified and applied.

Software Formal Verification Methodology using Aspect DEVS Verification Framework (Aspect DEVS 검증 틀을 이용한 소프트웨어 정형 검증 방법론)

  • Choi, Chang-Beom;Kim, Tag-Gon
    • Journal of the Korea Society for Simulation
    • /
    • v.18 no.3
    • /
    • pp.113-122
    • /
    • 2009
  • Software is getting more complex due to a variety of requirements that include desired functions and properties. Therefore, verifying and testing the software are complicated problems. Moreover, if the software is already implemented, inserting and deleting tracing/logging code into the source code may cause several problems, such as the code tangling and the code scattering problems. This paper proposes the Aspect DEVS Verification Framework which supports the verification and testing process. The Aspect DEVS Verification Framework utilizes Aspect Oriented Programming features to handle the code tangling and the code scattering problems. By applying aspect oriented features, a user can find and fix the inconsistency between requirement and implementation of a software without suffering the problems. The first step of the verification process is the building aspect code to make a software act as a generator. The second step is developing a requirement specification using DEVS diagrams and implementing it using the DEVSIM++. The final step is comparing the event traces from the software with the possible execution sequences from DEVS model.

Extraction of Wave Energy Using the Coupled Heaving Motion of a Circular Cylinder and Linear Electric Generator (원기둥과 선형발전기의 연성 수직운동을 이용한 파 에너지 추출)

  • Cho, Il-Hyoung;Kweon, Hyuck-Min
    • Journal of Ocean Engineering and Technology
    • /
    • v.25 no.6
    • /
    • pp.9-16
    • /
    • 2011
  • The feasibility of wave energy extraction from a heaving truncated cylinder and the corresponding response of the linear electric generator (LEG) composed of spring, magnet, and coil has been investigated in the frame of three-dimensional linear potential theory. The heaving motion of a circular cylinder is calculated by means of the matched eigenfunction expansion method. Further, the analytical results are validated by numerical results using the ANSYS AQWA commercial code. By the action of a heaving circular cylinder, the magnet suspended by a spring can slide vertically inside the heaving cylinder. The mechanical power is extracted from the magnet motion relative to the coil/stator which is attached to the cylinder. The coupled ODE of a heaving cylinder and LEG system in waves is derived to obtain the magnet motion relative to a cylinder. To maximize the relative motion of the magnet, both the buoy draft and the LEG system parameters (spring stiffness, damping) should be selected properly for generating the double resonance considering the peak frequency of the target spectrum.

Effect of Arrangement of Heat Transfer tube on the Thermal Performance for the High Temperature Generator (전열관 배열에 의한 고온재생기 열적 성능 변화)

  • Lee, In-Song;Cho, Keum-Nam
    • Proceedings of the SAREK Conference
    • /
    • 2009.06a
    • /
    • pp.266-271
    • /
    • 2009
  • The present study numerically investigated the effect of the geometry of the flattened tube on the thermal performance of a high temperature generator (HTG) of a double effect LiBr-water absorption system. The heat transfer tubes of the HTG were arranged behind a metal fiber burner. The heat transfer of the tubes of HTG were consisted with a set of circular and flattened tubes in series. FLUENT, as a commercial code, was applied for estimating the thermal performance of the HTG. Key parameters were the tube arrangement in the HTG. Temperature and velocity profiles in the HTG were calculated to estimate the thermal performance of the HTG. The heat transfer rate of a HTG tube was increased, and the gas temperature around the flattened tube was decreased as the pitch ratio was increased. The heat transfer rate for the circular tube bundle with the pitch ratio of 2.48 were larger by 10% respectively than that of 2.10 and the heat transfer rate for the flattened tube bundle with the pitch ratio of 1.88 were larger by 36% respectively than that of 1.63.

  • PDF