• 제목/요약/키워드: Code Coupling

검색결과 230건 처리시간 0.025초

Numerical Study on Performance of Horizontal Axis (Propeller) Tidal Turbine

  • Kim, Kyuhan;Cahyono, Joni
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2015년도 학술발표회
    • /
    • pp.296-296
    • /
    • 2015
  • The aim of this paper is to numerically explore the feasibility of designing a Mini-Hydro turbine. The interest for this kind of horizontal axis turbine relies on its versatility. For instance, in the field of renewable energy, this kind of turbine may be considered for different applications, such as: tidal power, run-of-the-river hydroelectricity, wave energy conversion. It is fundamental to improve the turbine performance and to decrease the equipment costs for achievement of "environmental friendly" solutions and maximization of the "cost-advantage". In the present work, the commercial CFD code ANSYS is used to perform 3D simulations, solving the incompressible Unsteady Reynolds-Averaged Navier-Stokes (U-RANS) equations discretized by means of a finite volume approach. The implicit segregated version of the solver is employed. The pressure-velocity coupling is achieved by means of the SIMPLE algorithm. The convective terms are discretized using a second order accurate upwind scheme, and pressure and viscous terms are discretized by a second-order-accurate centered scheme. A second order implicit time formulation is also used. Turbulence closure is provided by the realizable k - turbulence model. In this study, a mini hydro turbine (3kW) has been considered for utilization of horizontal axis impeller. The turbine performance and flow behavior have been evaluated by means of numerical simulations. Moreover, the performance of the impeller varied in the pressure distribution, torque, rotational speed and power generated by the different number of blades and angles. The model has been validated, comparing numerical results with available experimental data.

  • PDF

Prediction and analysis of optimal frequency of layered composite structure using higher-order FEM and soft computing techniques

  • Das, Arijit;Hirwani, Chetan K.;Panda, Subrata K.;Topal, Umut;Dede, Tayfun
    • Steel and Composite Structures
    • /
    • 제29권6호
    • /
    • pp.749-758
    • /
    • 2018
  • This article derived a hybrid coupling technique using the higher-order displacement polynomial and three soft computing techniques (teaching learning-based optimization, particle swarm optimization, and artificial bee colony) to predict the optimal stacking sequence of the layered structure and the corresponding frequency values. The higher-order displacement kinematics is adopted for the mathematical model derivation considering the necessary stress and stain continuity and the elimination of shear correction factor. A nine noded isoparametric Lagrangian element (eighty-one degrees of freedom at each node) is engaged for the discretisation and the desired model equation derived via the classical Hamilton's principle. Subsequently, three soft computing techniques are employed to predict the maximum natural frequency values corresponding to their optimum layer sequences via a suitable home-made computer code. The finite element convergence rate including the optimal solution stability is established through the iterative solutions. Further, the predicted optimal stacking sequence including the accuracy of the frequency values are verified with adequate comparison studies. Lastly, the derived hybrid models are explored further to by solving different numerical examples for the combined structural parameters (length to width ratio, length to thickness ratio and orthotropicity on frequency and layer-sequence) and the implicit behavior discuss in details.

Development of Model to Evaluate Thermal Fluid Flow Around a Submerged Transportation Cask of Spent Nuclear Fuel in the Deep Sea

  • Guhyeon Jeong;Sungyeon Kim;Sanghoon Lee
    • 방사성폐기물학회지
    • /
    • 제20권4호
    • /
    • pp.411-428
    • /
    • 2022
  • Given the domestic situation, all nuclear power plants are located at the seaside, where interim storage sites are also likely to be located and maritime transportation is considered inevitable. Currently, Korea does not have an independently developed maritime transportation risk assessment code, and no research has been conducted to evaluate the release rate of radioactive waste from a submerged transportation cask in the sea. Therefore, secure technology is necessary to assess the impact of immersion accidents and establish a regulatory framework to assess, mitigate, and prevent maritime transportation accidents causing serious radiological consequences. The flow rate through a gap in a containment boundary should be calculated to determine the accurate release rate of radionuclides. The fluid flow through the micro-scale gap can be evaluated by combining the flow inside and outside the transportation cask. In this study, detailed computational fluid dynamic and simplified models are constructed to evaluate the internal flow in a transportation cask and to capture the flow and heat transfer around the transportation cask in the sea, respectively. In the future, fluid flow through the gap will be evaluated by coupling the models developed in this study.

Machine Learning Model to Predict Osteoporotic Spine with Hounsfield Units on Lumbar Computed Tomography

  • Nam, Kyoung Hyup;Seo, Il;Kim, Dong Hwan;Lee, Jae Il;Choi, Byung Kwan;Han, In Ho
    • Journal of Korean Neurosurgical Society
    • /
    • 제62권4호
    • /
    • pp.442-449
    • /
    • 2019
  • Objective : Bone mineral density (BMD) is an important consideration during fusion surgery. Although dual X-ray absorptiometry is considered as the gold standard for assessing BMD, quantitative computed tomography (QCT) provides more accurate data in spine osteoporosis. However, QCT has the disadvantage of additional radiation hazard and cost. The present study was to demonstrate the utility of artificial intelligence and machine learning algorithm for assessing osteoporosis using Hounsfield units (HU) of preoperative lumbar CT coupling with data of QCT. Methods : We reviewed 70 patients undergoing both QCT and conventional lumbar CT for spine surgery. The T-scores of 198 lumbar vertebra was assessed in QCT and the HU of vertebral body at the same level were measured in conventional CT by the picture archiving and communication system (PACS) system. A multiple regression algorithm was applied to predict the T-score using three independent variables (age, sex, and HU of vertebral body on conventional CT) coupling with T-score of QCT. Next, a logistic regression algorithm was applied to predict osteoporotic or non-osteoporotic vertebra. The Tensor flow and Python were used as the machine learning tools. The Tensor flow user interface developed in our institute was used for easy code generation. Results : The predictive model with multiple regression algorithm estimated similar T-scores with data of QCT. HU demonstrates the similar results as QCT without the discordance in only one non-osteoporotic vertebra that indicated osteoporosis. From the training set, the predictive model classified the lumbar vertebra into two groups (osteoporotic vs. non-osteoporotic spine) with 88.0% accuracy. In a test set of 40 vertebrae, classification accuracy was 92.5% when the learning rate was 0.0001 (precision, 0.939; recall, 0.969; F1 score, 0.954; area under the curve, 0.900). Conclusion : This study is a simple machine learning model applicable in the spine research field. The machine learning model can predict the T-score and osteoporotic vertebrae solely by measuring the HU of conventional CT, and this would help spine surgeons not to under-estimate the osteoporotic spine preoperatively. If applied to a bigger data set, we believe the predictive accuracy of our model will further increase. We propose that machine learning is an important modality of the medical research field.

영산강 하구역 수질환경 관리를 위한 GIS기반 통합정보시스템 개발에 관한 연구 (A Study on the Development of GIS based Integrated Information System for Water Quality Management of Yeongsan River Estuary)

  • 이성주;김계현;박용길;이건휘;류재현
    • 한국습지학회지
    • /
    • 제16권1호
    • /
    • pp.73-83
    • /
    • 2014
  • 최근 정부에서는 영산강 하구역 수질환경의 현재 상황 파악 및 미래 상황 예측을 위하여 모니터링 및 모델 연구를 진행 중에 있다. 그러나 모니터링 및 모델 자료는 대부분 수치 및 문자 형태로 이루어져 있어 사용자들의 이해도가 떨어지는 실정이다. 따라서 본 연구에서는 하구역 수질환경의 현재 상황 파악 및 미래 상황 예측을 지원할 수 있는 GIS기반 통합정보시스템을 개발하였다. 시스템 개발을 지원하기 위하여 모니터링 및 모델 DB 수집, 모델 연계 방안 마련, 시스템 GUI 및 개발환경 정의, 시스템 구성 등을 수행하였다. 모니터링 자료는 2010 ~ 2012년 영산강 하구역을 대상으로 실시된 관측값을 사용하였으며, 모델 자료는 유역 지역을 모의하기 위한 HSPF(Hydrological Simulation Program-Fortran) 모델과 하천 및 하구 지역을 모의하기 위한 EFDC(Environmental Fluid Dynamics Code) 모델 자료를 사용하였다. 최종적으로 모니터링 및 모델 자료를 시스템에 적용하여 관리 및 표출 방안에 대하여 제시하였다. 본 연구를 통해 개발된 시스템은 영산강 하구역 수질환경을 정량적으로 파악 및 예측하는데 지원할 수 있으며, 지도 기반 환경에 모니터링 및 모델 자료를 표출함으로써 사용자의 공간적 이해도를 높였다. 향후에는 영산강 하구역 수질환경 문제점에 대처 가능한 의사결정지원시스템으로 고도화하여 환경 평가 및 정책 수립에 지원할 수 있을 것으로 기대된다.

인공위성 원격탐사 데이터와 수치모델을 이용한 해상 유출유 예측 향상 연구: Hebei Spirit호 기름 유출 적용 (Study on Improvement of Oil Spill Prediction Using Satellite Data and Oil-spill Model: Hebei Spirit Oil Spill)

  • 양찬수;김도연;오정환
    • 대한원격탐사학회지
    • /
    • 제25권5호
    • /
    • pp.435-444
    • /
    • 2009
  • 해상 기름유출사고 시, 효율적인 방제 전략을 위해서는 유출유의 위치 및 이동 특성을 파악하는 것이 매우 중요하다. 일반적으로 유출유의 모니터링은 항공기와 인공위성을 이용하고 있으며, 유출된 기름의 이동 경로를 예측하기 위해 수치모델이 적용되고 있다. 하지만, 원격탐사에 의한 모니터링 정보를 이용한 수치모델의 초기조건 적용은 이루어지지 않고 있다. 본 논문에서는 인공위성 자료를 통해 추출된 유출유 정보를 이용한 예측 모델의 활용가능성을 제시하고자 한다. EFDC 3차원 수치모델을 이용하여 2007년 12월 7일 태안 해안에서 발생한 Hebei Spirit호 기름유출사고의 유출유 이동을 예측하였다. 모델 초기조건과 모델결과 비교를 위하여, 12월 8일 KOMPSAT-2 MSC와 12월 11일 EVNISAT ASAR위성자료로부터 추출된 유출유 정보를 사용하였다. 모델초기 조건으로 인공위성 자료를 이용한 경우가 사고지점에서 유출을 가정하여 방류한 초기조건보다 유출된 기름의 분포측면에서 더 개선된 결과를 보였다.

Seismic assessment of transfer plate high rise buildings

  • Su, R.K.L.;Chandler, A.M.;Li, J.H.;Lam, N.T.K.
    • Structural Engineering and Mechanics
    • /
    • 제14권3호
    • /
    • pp.287-306
    • /
    • 2002
  • The assessment of structural performance of transfer structures under potential seismic actions is presented. Various seismic assessment methodologies are used, with particular emphasis on the accurate modelling of the higher mode effects and the potential development of a soft storey effect in the mega-columns below the transfer plate (TP) level. Those methods include response spectrum analysis (RSA), manual calculation, pushover analysis (POA) and equivalent static load analysis (ESA). The capabilities and limitations of each method are highlighted. The paper aims, firstly, to determine the appropriate seismic assessment methodology for transfer structures using these different approaches, all of which can be undertaken with the resources generally available in a design office. Secondly, the paper highlights and discusses factors influencing the response behaviour of transfer structures, and finally provides a general indication of their seismic vulnerability. The representative Hong Kong building considered in this paper utilises a structural system with coupled shear walls and moment resisting portal-frames, above and below the TP, respectively. By adopting the wind load profile stipulated in the Code of Practice on Wind Effects: Hong Kong-1983, all the structural members are sized and detailed according to the British Standards BS8110 and the current local practices. The seismic displacement demand for the structure, when built on either rock or deep soil sites, was determined in a companion paper. The lateral load-displacement characteristic of the building, determined herein from manual calculation, has indicated that the poor ductility (brittle nature) of the mega-columns, due mainly to the high level of axial pre-compression as found from the analysis, cannot be effectively alleviated solely by increasing the quantity of confinement stirrups. The interstorey drift demands at lower and upper zones caused by seismic actions are found to be substantially higher than those arising from wind loads. The mega-columns supporting the TP and the coupling beams at higher zones are identified to be the most vulnerable components under seismic actions.

LadyGaGa의 패션스타일에 나타난 알레고리 연구(제2보) - 뮤직비디오를 중심으로 - (A Study on the Allegory in LadyGaGa's Fashion Style(Part 2) - Focused on Music Video -)

  • 김향자;권미정
    • 한국의류산업학회지
    • /
    • 제14권5호
    • /
    • pp.701-712
    • /
    • 2012
  • This study examines the various expressions and immanent value of fashion and beauty style based on Craig Owens's Allegory theory. I analyzed four application elements of Borrow, Site Specificity, Accumulation of Strategy, and Hybridization in? Ladygaga's Music Videos. The results are as follows. 'Borrow' presents a kitsch style and playful Pop-art style, transformation of gender from Mini Mouse body suit, telephone headpiece, and can hair. 'Site specificity' presents the temporarity of fashion material through rebirth, aging, natural extinction from the chain over the black jump suit, crime scene tape, and skull-face makeup with masculine style. 'Accumulation of strategy' presents a futuristic chic fashion style from a layered style, retrospective fashion, repetition and duplication in Music Videos. It shows the physical beauty of an Asian warrior style in Poker Face. 'Hybridization' present Cyborg feminism and 'Will of Power' from iPOD LCD glasses and Pyro-Bra. The Pyro-Bra represents how the female body can be used as a weapon in the outfits of Lady Gaga. In addition, Immanent value is as follows. Textual interaction with high art is accomplished through a combination of contemporary social and cultural significance to understand the cultural code and to extend the value. Combined with high culture, popular music genre is accomplished through musical appreciation by a woman in fashion styling and sensual pleasures of the body as a tool to express a sublime advantage. Fashion style is accomplished by overcoming a self-transcendent body image representation. The way in which mutual coupling dismantling, destruction, and uncertainty is to re-launch the static, with a pluralistic context of Textuality.

Effect of damage on permeability and hygro-thermal behaviour of HPCs at elevated temperatures: Part 2. Numerical analysis

  • Gawin, D.;Majorana, C.E.;Pesavento, F.;Schrelfer, B.A.
    • Computers and Concrete
    • /
    • 제2권3호
    • /
    • pp.203-214
    • /
    • 2005
  • In the Part 1 paper (Gawin, et al. 2005) some experimental results concerning micro-structural tests, permeability measurements and stress-strain tests of four types of High Performance Concrete, exposed to elevated temperatures (up to $700^{\circ}C$) are presented and discussed. On the basis of these experimental results parameters of the constitutive relationships describing influence of damage and temperature upon material intrinsic permeability at high temperature were determined. In this paper the effects of various formulations of damage-permeability coupling on results of computer simulations are analysed and compared with the results obtained by means of the previously proposed approach, that does not take into account the thermo-chemical concrete damage directly. Numerical solutions are obtained using the recently developed fully coupled model of hygro-thermal and damage phenomena in concrete at elevated temperatures. High temperature effects are considered by means of temperature and pressure dependence of several material parameters. Based on the mathematical model, the computer code HITECOSP was developed. Material parameters of the model were measured by several European laboratories, which participated in the "HITECO" research project. A model problem, concerning hygro-thermal behaviour and degradation of a HPC structure during fire, is solved. The influence of two different constitutive descriptions of the concrete permeability changes at high temperature, including thermo-chemical and mechanical damage effects, upon the results of computer simulations is analysed and discussed.

열분해 및 삭마 환경의 복합재 구조물의 열기계적 연계 해석 (Thermomechanical Analysis of Composite Structures in Pyrolysis and Ablation Environments)

  • 최윤규;김성준;신의섭
    • 한국항공우주학회지
    • /
    • 제41권8호
    • /
    • pp.597-604
    • /
    • 2013
  • 본 논문에서는 열분해 및 삭마 환경의 복합재 구조물에 대한 열기계적 연계 해석을 수행하였다. 열분해 과정의 재료 밀도 감소, 기공 가스 확산, 흡열 반응 에너지와 삭마 과정에서의 표면 침식 효과 등을 고려하였다. 상용 유한요소 코드에 교차 연계 알고리듬을 적용하여 완전 연계된 열 해석 및 구조 해석 인터페이스를 구성하였다. 수치 실험을 통해서 탄소/페놀릭 복합재료의 기본적인 열분해 및 삭마 특성을 분석하였다. 특히, 화학적 및 기계적 삭마에 영향을 미치는 주요 인자에 따른 표면 침식량 등을 비교하였다. 또한, 열분해 과정의 수축 또는 팽창 변형도가 재료의 열기계적 거동에 미치는 영향도 검토하였다.