• Title/Summary/Keyword: Cockle Shells

Search Result 15, Processing Time 0.033 seconds

A Study Properties of concrete Recycling Cockle Shells as Fine Aggregate (고막 패각의 콘크리트 잔골재로 재활용 방안에 관한 연구)

  • Kim, Jeong-Sup;Kim, Kwang-Sup;Kim, Pan-Sun
    • Journal of the Korea Institute of Building Construction
    • /
    • v.4 no.1
    • /
    • pp.141-146
    • /
    • 2004
  • 1) As a result of compressive strength experiment, rupture compressive strength showed more increases in specimens of 15% and 20% of Cockle shells in those of non-mixture. Comparing compressive strength between no-mixed Specimens and Specimens of containing Cockle shells, Specimens containing Cockle shells showed higher strength in 60 days and 90 days of age, and as ark Cockle is contained and age is elapsed, compressive strength is also increased In addition, estimation of compressive strength by reactive hardness in concrete using Cockle shells as aggregate shows low reliability. 2) As a result of experimenting compressive strength after heating, Specimens containing Cockle shells and non-mixed Specimens showed similar strength at $200^{\circ}C$, but compressive strength was lowered as content of Cockle shells increased at over $400^{\circ}C$ and heating temperature was higher. It is because Cockle shells was fired by heat and then its adhesion and bonding capacity were lost. 3) To sum up the above experimental results, it is found that using splitted Cockle shells as aggregate for concrete by 10%~20% showed the same or higher compressive strength and shear strength as concretes using general aggregate and it can be used as substitute aggregate of concrete. It is considered that for future use of splitted Cockle shells as substitute concrete aggregate, continuous researches of its durability, applicability and economy are needed.

A Study on Ductility Capacity of Reinforced Concrete Beam without Shear Reinforcement Using Cockle Shells as Fine Aggregate (고막 패각을 잔골재로 사용한 전단보강근이 없는 철근콘크리트 보의 연성에 관한 연구)

  • Kim, Jeong-Sup;Kim, kwang-seok
    • Journal of the Korea Institute of Building Construction
    • /
    • v.5 no.2 s.16
    • /
    • pp.139-146
    • /
    • 2005
  • As a result of compressive strength, specimens having mixture rate of cockle shells of $15\%\;and\;20\%$ showed more increases of compressive strength than non-mixture specimens as age increases. Ductility capacity of specimens was higher in specimens mixing cockle shells than in specimens using general fine aggregates and specimen of $10\%$ of cockle shells was highest in ductility capacity. To sum up all experimental results, ductility capacity of specimen without shear reinforcement using mixture of cockle shell was higher than non-mixture specimen and it is considered that mixture of cockle shells up to $20\%$ as fine aggregate for concrete will be available. Continuous researches on durability, workability and economy of crushed cockle shells used for substitute fine aggregate of concrete will be needed.

A Study on the Shear Behavior of Reinforced Concrete Beams Using of Cockle Shells as Fine Aggregate (고막 패각을 잔골재로 사용한 철근콘크리트 보의 전단 거동에 관한 연구)

  • Kim, Jeong-Sup;Shin, Yong-Seok
    • Journal of the Korea Institute of Building Construction
    • /
    • v.4 no.2
    • /
    • pp.89-95
    • /
    • 2004
  • 1) As result of specimen with shear reinforcing bar of reinforced concrete beam, ductile coefficient of specimen was high in specimen containing Cockle shells based on non-mixed specimen. In increase rate of specimens, yield strength was similar in specimens containing Cockle shells and non-mixed specimens and maximum strength was higher in specimen containing Cockle shells. 2) To sum up the above experimental results, it is found that using splitted Cockle shells as aggregate for concrete by 10%~ 15% showed the same or higher compressive strength and shear strength as concretes using general aggregate and it can be used as substitute aggregate of concrete. It is considered that for future use of splitted Cockle shells as substitute concrete aggregate, continuous researches of its durability, applicability and economy are needed.

Strength, Absorption and Interfacial Properties of Mortar Using Waste Shells as Fine Aggregates (잔골재를 패각으로 치환한 모르터의 강도, 흡수율 및 계면 결합형태)

  • Moon, Hoon;Kim, Ji-Hyun;Lee, Jae-Yong;Chung, Chul-Woo
    • Journal of the Korea Institute of Building Construction
    • /
    • v.14 no.6
    • /
    • pp.523-529
    • /
    • 2014
  • Large amounts of waste shells have been produced each year from shellfish raising industries located in Korean costal areas. Due to the limited space for the waste shell disposal, the related environmental problem has been a serious issue. It is believed that using the waste shells as a source of aggregate for mortar, concrete or bricks can be a good solution. In this research, possibility of utilizing waste shells as an aggregate of mortar is investigated. Waste shells of manila clam, cockle, clam, sea mussel, and oyster were properly crushed, sieved, and sorted to meet the requirements of the grading of standard fine aggregate. After that, the waste shells were used as partial and total replacement of the fine aggregate, and their absorption and 28-day compressive strengths of mortar were measured. In general, replacement of waste shells increased the absorption and decreased the strength. However, one specimen with cockle increased compressive strength as replacement ratio increased. Mortar with cockle of 50% and 100% replacement showed higher compressive strength than that of control mortar. This increase of compressive strength was found to be affected by the strong interfacial bonding properties of the cockle and a cement matrix.

A Study on Flexural Behavior of Reinforced Concrete Beam Using Cockle Shells as Fine Aggregate (잔골재로 고막 패각을 사용한 철근콘크리트 보의 휨 거동에 관한 연구)

  • Kim, Jeong-Sup;Cho, Cheol-Hee;Kim, Kang-Sup
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.8 no.4
    • /
    • pp.265-273
    • /
    • 2004
  • As a result of compressive strength experiment, rupture compressive strength showed more increases in specimens of 15% and 20% of Cockle shells in those of non-mixture. The specimen which was used general aggregate showed the highest value and ductility capacity was getting decreased as the amount of cockle shell was getting increased in the ductility capacity of specimen. We might conclude that the reason of the yield strength's decline was the lack of the bond strength which was caused by the amount of cockle shell.

Evaluation on the Properties and Interfacial Bonding Form of Mortar Mixed with Waste Shells (패각류를 혼입한 모르터의 기초물성 평가 및 계면 결합상태)

  • Moon, Hoon;Kim, Ji-Hyun;Lee, Jae-Yong;Chung, Chul-Woo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2014.05a
    • /
    • pp.208-209
    • /
    • 2014
  • Recently, many environmental problems occur due to the waste shells in South Korea. In case of oyster and cockle, utilizing waste shells to produce fertilizer once also, but due to sluggish consumption, production is no longer difficult. The stored amount of waste shells in the fertilizer manufacturing company is overfilled, and thus cannot accept any more of the waste shells. As a result, landfill and dumping of waste shells have become an increasingly environmental problems. In this research, the basic physical properties and interfacial bonding form of the mortar mixed with waste shells (manila clam, cockle, clam, sea mussel, oyster) were evaluated.

  • PDF

Effects of Crushed Shells on the Physical Properties of Cement Mortar (분쇄패각이 시멘트 모르터의 물성에 미치는 영향)

  • Kim, Ji-Hyun;Chung, Chul-Woo;Lee, Jae-Yong
    • Journal of the Korea Institute of Building Construction
    • /
    • v.14 no.1
    • /
    • pp.94-101
    • /
    • 2014
  • Approximately 240,000 tons of waste shells are produced annually in the south and west coast of South Korea. Some of these waste shells (oyster, cockle) are recycled as seeding collector and fertilizer, but most are dumped illegally near the coast. One of the alternative solutions that can economically utilize a large amount of these waste shells is to apply them to the production of construction materials. In this research, the basic physical properties of waste shells such as oyster, cockle, clam, manila clam were investigated, and were used to prepare cement mortar with a 25% replacement ratio of sand. According to the results, the 28 day compressive strength of cement mortar with cockle and manila clam shells was similar to that of plain cement mortar. The compressive strength decreased by about 18% when clam was used. However, the cement mortar with oyster shell showed about a 35% reduction in 28-day compressive strength, and two times the absorption capacity of plain cement mortar. The reduction in compressive strength and the increase in absorption capacity were mostly associated with the porous nature of the oyster shell.

Mineralogical Properties and Heavy Metal Removal Efficiency of Shells (패각의 광물학적 특성 및 중금속 제거 효율 평가)

  • Song, Hye Won;Kim, Jae Min;Kim, Young Hun;Kim, Jeong Jin
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.35 no.3
    • /
    • pp.387-396
    • /
    • 2022
  • In this study, the removal efficiencies of heavy metals were evaluated using cockle, abalone, and scallop shells. Cockle, abalone, and scallop are composed mainly of aragonite, aragonite, and calcite, and calcite, respectively. The specific surface area of each shell varies from 2.7241 m2/g to 4.5481 m2/g and the order of that is scallop > abalone > cockle. All shells of cockle, abalone, and scallop had no As removal effect by adsorption and precipitation as pH increased. Pb was removed by all shell samples at initial reaction. Although the removal efficiency of Cd and Zn were depending on the reaction medium, that was increased in order of scallop > abalone > cockle. Heavy metal removal efficiency tends to be slightly higher for heated samples than with the raw materials, and higher as the specific surface area is larger.

Evaluation on the Properties of Mortar using Waste Shells for Partical Replacement of Fine Aggregate (패각류를 잔골재 대체재로 사용한 모르터의 기초물성 평가)

  • Kim, Ji-Hyun;Cho, Kwang-Hyun;Lee, Jae-Yong;Chung, Chul-Woo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2013.11a
    • /
    • pp.148-149
    • /
    • 2013
  • Recently, the construction industry in South Korea, has experienced many difficulties in lack of supply with construction materials. Since waste shells can be possibly used as replacement materials of fine aggregate, the successful application can resolve, to some extent at least, the economic problems and environmental problems. In this research, the basic physical properties of the mortar which was used as fine aggregate substitute (clam, cockle, manila clam, oyster) were evaluated. According to the experimental results, the absorption rate and compressive strength of samples with various shells were equivalent to that of plain mortar. The mortar which replaced 25% of oyster shell with sand showed approximately 30% lower compressive strength and twice as much absorption as plain mortar. It was found that waste shells can be used as replacement materials of fine aggregate, but the oyster shell requires further experimental works in order for its successful application.

  • PDF

A study on the environment of waste shell and its recycling method (패각의 부존환경 및 재활용에 관한 연구)

  • 이인곤
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.10 no.2
    • /
    • pp.159-165
    • /
    • 2000
  • This study was investigated the environment of waste shells such as oyster, cockle and paphia on southern shore in korea and established the recycling method to prevent the environmental pollution, etc. The waste shells were reclaimed at public shore illegally or leaved on the surroundings of shore. The origin mechanism, XRD and TG-DTA analyses were performed to effective recycling of waste shells, and the optimal recycling method was preparation of the calcium carbonate. In this work, calcium carbonate and lime fertilizer of granular shape were prepared using the waste shell.

  • PDF