• Title/Summary/Keyword: Cobalt effect

Search Result 314, Processing Time 0.025 seconds

A Review of Domestic Research Trends of Fischer-Tropsch for the Production of Light Hydrocarbons and Middle Distillates From Syngas (합성가스로부터 경질탄화수소 및 중산유분을 생산하기 위한 Fischer-Tropsch의 국내연구동향)

  • Kim, Jin-Ho;Kim, Hyo-Sik;Kim, Ji-Hyeon;Ryu, Jae-Hong;Kang, Suk-Hwan;Park, Myung-June
    • Korean Chemical Engineering Research
    • /
    • v.57 no.4
    • /
    • pp.565-574
    • /
    • 2019
  • Fischer-Tropsch synthesis process is a typical method for synthesizing hydrocarbons from syngas and is mainly known as iron (Fe) and cobalt (Co) catalysts. Currently, some technologies such as CTL (Coal to Liquid) and GTL (Gas to Liquid) are operated on a commercial scale depending on the products, but the research to produce light hydrocarbons and middle distillates directly has not been commercialized. Therefore, in this study, domestic studies for direct production of light hydrocarbons and middle distillates are summarized and the effect of catalyst preparation, promoter addition, zeolite combination on product selectivity is investigated.

Effects of heme oxygenase-1 upregulation on isoproterenol-induced myocardial infarction

  • Eltobshy, Somaia A.G.;Hussein, Abdelaziz M.;Elmileegy, Asaad A.;Askar, Mona H.;Khater, Yomna;Metias, Emile F.;Helal, Ghada M.
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.23 no.3
    • /
    • pp.203-217
    • /
    • 2019
  • The present study was designed to examine the effect of heme oxygenase-1 (HO-1) induction by cobalt protoporphyrin (CoPP) on the cardiac functions and morphology, electrocardiogram (ECG) changes, myocardial antioxidants (superoxide dismutase [SOD] and glutathione [GSH]), and expression of heat shock protein (Hsp) 70 and connexin 43 (Cx-43) in myocardial muscles in isoproterenol (ISO) induced myocardial infarction (MI). Thirty two adult male Sprague Dawely rats were divided into 4 groups (each 8 rats): normal control (NC) group, ISO group: received ISO at dose of 150 mg/kg body weight intraperitoneally (i.p.) for 2 successive days; ISO + Trizma group: received (ISO) and Trizma (solvent of CoPP) at dose of 5 mg/kg i.p. injection 2 days before injection of ISO, with ISO at day 0 and at day 2 after ISO injections; and ISO + CoPP group: received ISO and CoPP at a dose of 5 mg/kg dissolved in Trizma i.p. injection as Trizma. We found that, administration of ISO caused significant increase in heart rate, corrected QT interval, ST segment, cardiac enzymes (lactate dehydrogenase, creatine kinase-muscle/brain), cardiac HO-1, Hsp70 with significant attenuation in myocardial GSH, SOD, and Cx-43. On the other hand, administration of CoPP caused significant improvement in ECG parameters, cardiac enzymes, cardiac morphology; antioxidants induced by ISO with significant increase in HO-1, Cx-43, and Hsp70 expression in myocardium. In conclusions, we concluded that induction of HO-1 by CoPP ameliorates ISO-induced myocardial injury, which might be due to up-regulation of Hsp70 and gap junction protein (Cx-43).

Effect of H2O2 modification of H3PW12O40@carbon for m-xylene oxidation to isophthalic acid

  • Fang, Zhou-wen;Wen, Di;Wang, Zhi-hao;Long, Xiang-li
    • Korean Journal of Chemical Engineering
    • /
    • v.35 no.11
    • /
    • pp.2172-2184
    • /
    • 2018
  • The production of isophthalic acid (IPA) from the oxidation of m-xylene (MX) by air is catalyzed by $H_3PW_{12}O_{40}$ (HPW) loaded on carbon and cobalt. We used $H_2O_2$ solution to oxidize the carbon to improve the catalytic activity of HPW@C catalyst. Experiments reveal that the best carbon sample is obtained by calcining the carbon at $700^{\circ}C$ for 4 h after being impregnated in the 3.75% $H_2O_2$ solution at $40^{\circ}C$ for 7 h. The surface characterization displays that the $H_2O_2$ modification leads to an increase in the acidic groups and a reduction in the basic groups on the carbon surface. The catalytic capability of the HPW@C catalyst depends on its surface chemical characteristics and physical property. The acidic groups play a more important part than the physical property. The MX conversion after 180 min reaction acquired by the HPW@C catalysts prepared from the activated carbon modified in the best condition is 3.81% over that obtained by the HPW@C catalysts prepared from the original carbon. The IPA produced by the former is 46.2% over that produced by the latter.

A study on the fabrication of high purity lithium carbonate by recrystallization of low grade lithium carbonate (저급 탄산리튬의 재결정화를 통한 고순도 탄산리튬 제조에 대한 연구)

  • Kim, Boram;Kim, Dae-Weon;Hwang, Sung-Ok;Jung, Soo-Hoon;Yang, Dae-Hoon
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.31 no.1
    • /
    • pp.16-23
    • /
    • 2021
  • Lithium carbonate recovered from the waste solution generated during the lithium secondary battery manufacturing process contains heavy metals such as cobalt, nickel, and manganese. In this study, the recrystallization of lithium carbonate was performed to remove heavy metals contained in the powder and to increase the purity of lithium carbonate. First, the leaching efficiency of lithium carbonate according to pH in the aqueous hydrochloric acid solution was examined, and the effect on the recrystallization of lithium carbonate according to the equivalent and concentration of sodium carbonate was confirmed. As the equivalent and concentration of sodium carbonate increased, the recovery rate of lithium carbonate improved. And the SEM image showed that the crystal shape was changed depending on the reaction conditions with sodium carbonate. Finally, the high purity lithium carbonate of 99.9% or more was recovered by washing with water.

Studies on Multi-step Addition of NMP in (LiNi0.80Co0.15Al0.05) (NCA) Cathode Slurry Preparation and its Rheological, Mechanical Strength and Electrochemical Properties for Li-ion Cells

  • Vasudevarao Pasala;Satyanarayana Maddukuri;V. Sethuraman;Rekha Lankipalli;Devi Gajula;Venkateswarlu Manne
    • Journal of Electrochemical Science and Technology
    • /
    • v.14 no.3
    • /
    • pp.262-271
    • /
    • 2023
  • For electrode stability and the electrochemical performance of the Li-ion cell, it is essential that the active ingredients and unique additives in the polymer binder be well dispersed with the solvent-based slurry. The efficient procedure used to create the slurry affects the rheological characteristics of the electrode slurry. When successively adding different steps of Nmethyl-2-pyrrolidone (NMP) solvent to the cathode composition, it is evenly disseminated. The electrochemical performance of the Li-ion cells and the electrodes made with slurry formed by single step and multiple steps of addition of NMP solvent are examined. To preform rheological properties of cathode electrode slurry on Ni-rich Lithium Nickel-Cobalt-Aluminum Oxide (LiNi0.80Co0.15Al0.05) (NCA). Also, we investigate different step addition of electrode formation and mechanical strength characterization like peel strength. According to the EIS study, a multi-step electrode slurry has lower internal resistance than a single-step electrode slurry, which results in better electrical characteristics and efficiency. Further, microstructure of electrodes is obtained electrochemical performance in the 18650 cylindrical cells with targeted capacity of 1.5 Ah. The slurry of electrodes prepared by single step and multiple steps of addition of NMP solvent and its effect on the fabrication of 1.5 Ah cells. A three-step solvent addition on slurry has been found to be a lower internal resistance than a single-step electrode slurry as confirmed by the EIS analysis, yielding improved electrical properties and efficiency.

Adsorption of phenol on metal treated by granular activated carbon (금속 침적처리에 따른 입상활성탄의 페놀흡착)

  • Kang, Kwang Cheol;Kim, Jin Won;Kwon, Soo Han;Kim, Seung Soo;Baik, Min Hoon;Choi, Jong Won
    • Analytical Science and Technology
    • /
    • v.20 no.3
    • /
    • pp.193-197
    • /
    • 2007
  • In this study, the effect of metal treatment on granular activated carbon (GAC) was investigated in the context of phenol adsorption. Cobalt(II) nitrate, and zinc(II) nitrate solution were used for metal treated. The specific surface area and the pore structure were evaluated from nitrogen adsorption data at 77 K. The phenol adsorption rates onto GAC were measured by UV-Vis spectrophotometer. Iodine adsorption capacity of Co-GAC is much better then that of the GAC. The Co-GAC with mesopore is more efficient than other adsorbents for the adsorption of polymer such as methyleneblue. The adsorption capacity of reference-GAC and metal-GAC were increased in order of Co-GAC>Zn-GAC>Reference-GAC, in spite of a decrease in specific surface area which was resulted from pore blocking by metal.

Highly Dispersed Supported Gold Catalysts -I. Effect of Gold Addition and Active Site Formation- (고분산 담지 금촉매 - I. 금의 첨가 효과 및 활성점 생성 -)

  • Ahn, Ho-Geun;Niiyama, Hiroo
    • Applied Chemistry for Engineering
    • /
    • v.5 no.2
    • /
    • pp.285-294
    • /
    • 1994
  • Some supported gold catalysts were prepared by impregnation and coprecipitation methods. Effect of gold addition and active sloe formation were studied by investigating particle sizes of gold, amounts of oxygen adsorbed, adsorption properties of CO and NO, and reduction and oxidation properties, etc.. The gold particles of the catalyst by impregnation were irregular and very large as 30~100 nm, but those by coprecipitation were uniform and ultra-fine as about 4 nm. On $Au/Al_2O_3$ catalyst, the addition of gold to inactive $Al_2O_3$ caused the decomposition of $N_2O$, and CO was not irreversibly adsorbed while $O_2$ was atomically and irreversibly adsorbed. The adsorption sites of oxygen were attributed to the active sites which were restricted to the circumference of hemispherical gold particle-support interface rather than all atoms on the surface of gold particle. Also, CO was reversibly and irreversibly adsorbed on $Al_2O_3$ at low temperature, and the addition of gold weakened both reversible and irreversible adsorptions. The affinity for CO on $Au/Co_3O_4$ catalyst decreased conspicuously compared to $Co_3O_4$. The effect of gold addition did not appear in reduction step but did remarkably in reoxidation step; the added gold promoted the reoxidation of the reduced cobalt atoms.

  • PDF

Ferromagnetism and Anomalous Hall Effect of $TiO_2$-based superlattice films for Dilute Magnetic Semiconductor Applications

  • Jiang, Juan;Seong, Nak-Jin;Jo, Young-Hun;Jung, Myung-Hwa;Yang, Jun-Mo;Yoon, Soon-Gil
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.41-41
    • /
    • 2007
  • For use in spintronic materials, dilute magnetic semiconductors (DMS) are under consideration as spin injectors for spintronic devices[l]. $TiO_2$-based DMS doped by a cobalt, iron, and manganese et al. was recently reported to show ferromagnetic properties, even at temperatures above 300K and the magnetic ordering was explained in terms of carrier-induced ferromagnetism, as observed for a III-V based DMS. An anomalous Hall effect (AHE) and co-occurance of superparamagnetism in reduced Co-doped rutile $TiO_{2-\delta}$ films have also been reported[2]. Metal segregation in the reduced metal-doped rutile $TiO_2-\delta$ films still remains as problems to solve the intrinsic DMS properties. Superlattice films have been proposed to get dilute magnetic semiconductor (DMS) with intrinsicroom-temperature ferromagnetism. For a $TiO_2$-based DMS superlattice structure, each layer was alternately doped by two different transition metals (Fe and Mn) and deposited to a thickness of approximately $2.7\;{\AA}$ on r-$Al_2O_3$(1102) substrates by pulsed laser deposition. The r-$Al_2O_3$(1102) substrates with atomic steps and terrace surface were obtained by thermal annealing. Samples of $Ti_{0.94}Fe_{0.06}O_2$(TiFeO), $Ti_{0.94}Mn_{0.06}O_2$(TiMnO), and $Ti_{0.94}(Fe_{0.03}Mn_{0.03})O_2$ show a low remanent magnetization and coercive field, as well as superparamagnetic features at room temperature. On the other hand, superlattice films (TiFeO/TiMnO) show a high remanent magnetization and coercive field. An anomalous Hall effect in superlattice films exhibits hysisteresis loops with coercivities corresponding to those in the ferromagnetic Hysteresis loops. The superlattice films composed of alternating layers of $Ti_{0.94}Fe_{0.06}O_2$ and $Ti_{0.94}Mn_{0.06}O_2$ exhibit intrinsic ferromagnetic properties for dilute magnetic semiconductor applications.

  • PDF

Effect of Small Additives on the Microstructure of Strip-Cast Nd-Fe-B Alloys (소량의 첨가원소가 Strip-Cast Nd-Fe-B 향금의 미세 조직 형성에 미치는 영향)

  • Lee, D.H.;Jang, T.S.;Kim, D.H.;Kim, Andrew-S.
    • Journal of the Korean Magnetics Society
    • /
    • v.14 no.5
    • /
    • pp.196-200
    • /
    • 2004
  • In order to improve dendritic formation of Nd$_2$Fe$\_$14/B phase in the strip-cast Nd-Fe-B alloys that are frequently used for production of high energy sintered magnets, effect of small substitutional additives such as Cu (0.3~1.0 at. %) and Co (0.5~1.5 at.%) on the phase formation and microstructures of the strip-cast alloys based on Nd$\_$14/Fe$\_$80/B$\_$6/ were investigated. As the amount of Cu addition increased, formation of Nd$_2$Fe$\_$14/B dendrites along the direction normal to the strip surface was suppressed with the reduction of the strip thickness mainly due to the increase of fluidity of the melt. However, both the dendrites and their <001> preferred orientation along the direction normal to the strip surface were improved with the increase of the strip thickness as the amount of Co addition increased. The dendrites became finer after small amount of Cu or Co was added. While small copper additions tended to stabilize the formation of primary Fe, small cobalt additions suppressed it. When small amount of Zr was added, however, the dendrite structures were totally collapsed with excessive grain growth of Nd$_2$Fe$\_$14/B.

Effect of Lithium Ion Concentration on Electrochemical Properties of BF3LiMA-based Self-doping Gel Polymer Electrolytes (BF3LiMA기반 자기-도핑형 겔 고분자 전해질의 전기화학적 특성에 미치는 리튬이온 농도의 영향)

  • Kang, Wan-Chul;Ryu, Sang-Woog
    • Journal of the Korean Electrochemical Society
    • /
    • v.13 no.3
    • /
    • pp.211-216
    • /
    • 2010
  • Boron trifluoride lithium methacrylate ($BF_3$LiMA)-based gel polymer electrolytes (GPEs) were synthesized with various $BF_3$LiMA concentration to elucidate the effect on ionic conductivity and electrochemical stability by a AC impedance and linear sweep voltammetry (LSV). As a result, the highest ionic conductivity reached $5.3{\times}10^{-4}Scm^{-1}$ at $25^{\circ}C$ was obtained for 4 wt% of $BF_3$LiMA. Furthermore, high electrochemical stability up to 4.3 V of the $BF_3$LiMA-based GPE was observed in LSV measurement since the counter anion was immobilized in this self-doped system. On the other hand, it was assumed that there was a rapid decomposition of electrolytes on a lithium metal electrode which results in a high solid electrolyte interface (SEI) resistance. However, a high stability toward graphite or lithium cobalt oxide (LCO) electrode thereby a low SEI resistance was observed from the AC impedance measurement as a function of storage time at $25^{\circ}C$. Consequently, the high ionic conductivity, good electrochemical stability and the good interfacial compatibility with graphite and LCO were achieved in $BF_3$LiMA-based GPE.