• Title/Summary/Keyword: Cobalt (II) complexes

Search Result 57, Processing Time 0.031 seconds

Electrochemical Properties of Oxygen Adducts Pentadentate Schiff Base Cobalt (Ⅱ) Complexes in Aprotic Solvents (비수용매에서 다섯 자리 Schiff Base Cobalt (Ⅱ) 착물들의 산소 첨가 생성물에 대한 전기화학적 성질)

  • Choe, Ju Hyeong;Jeong, Jin Sun;Choe, Yong Guk;Seo, Seong Seop
    • Journal of the Korean Chemical Society
    • /
    • v.34 no.1
    • /
    • pp.51-62
    • /
    • 1990
  • Pentadentate Schiff base cobalt(II) complexes; Co(II)(Sal-DET) and Co(II)(Sal-DPT) were synthesized and these complexes were allowed to react with dry to form oxygen adducts of cobalt(II) complexes such as [Co(III)(Sal-DET)]$_2O_2$ and [Co(III)(DPT)]$_2O_2$ in aprotic solvents. These complexes have been identified by IR spectra, TGA, DSC, magnetic susceptibility measurements, and elemental analysis. It has been found that the oxygen adadduct complexes of $\mu$-peroxo type have hexaccordinated octahedral configuration with pentadentate schiff base cobalt(II) and oxygen, but the mole ratio of oxygen to cobalt(III) complexes of first step for oxygen adduct formation reaction of cobalt(II) complexes in aprotic solvents are 1:1. The redox reaction processes of Co(II)(Sal-DET), Co(II)(Sal-DPT), and oxygen adduct of cobalt(II) complexes were investigated by cyclic voltammetry and DPP method with glassy carbon electrode in 0.1M TEAP-DMSO and 0.1M TEAP-pyridine. As a result the reduction reaction processes of Co(III)/Co(II) and Co(II)/Co(I) for cobalt(II) complexes and oxygen adducts of cobalt(II) complexes are two irreversible steps of one eletron process, and reaction processes of oxygen for oxygen adducts complexes were quasireversible and redox range of potential was $E_{pc}$ = -0.97V∼-0.86V and $E_{pa}$ = -0.87V ∼ 0.64V.

  • PDF

Studies on The Electrochemical Properties of Oxygen adducts Tetradentate Schiff Base Cobalt(II) Complexes in DMSO (I) (DMSO용액에서 네자리 Schiff Base Cobalt(II) 착물들의 산소 첨가 생성물에 대한 전기화학적 성질에 관한 연구 (제 1 보))

  • Chjo Ki-Hyung;Jin-Soon Chung;Heui-Suk Ham;Seoing-Seob Seo
    • Journal of the Korean Chemical Society
    • /
    • v.31 no.6
    • /
    • pp.542-554
    • /
    • 1987
  • Tetradentate schiff base cobalt(II) complexes; Co(SED), Co(SND) and Co(SOPD) have been prepared, these complexes have react with dry oxygen in DMSO to form oxygen adducts cobalt(III) complexes; $[Co(SED)(DMSO)]_2O_2,\;[Co(SND)(DMSO)]_2O_2$ and $[Co(SOPD)(DMSO)]_2O_2$. It seems to be that the oxygen adducts cobalt(Ⅲ) complexes have heexa coordinated octahedral configration with tetradentate schiff base cobalt (III), DMSO and oxygen, and the mole ratio of oxygen to cobalt(II) complexes are 1 : 2, these complexes have been identified by IR-Spectra, T.G.A., magnetic susceptibilitis and elemental analysis of C.H.N. and Cobalt. The redox reaction process of Co(SED), Co(SND) and Co(SOPD) complexes was investigated by cyclic voltammetry with glassy carbon electrode in 0.1M TEAP-DMSO. The results of redox reaction process of Co(II) / Co(III) and Co(II) / Co(I) for cobalt(SED) and cobalt(SOPD) complexes and Co(II) / Co(III) process for cobalt(SND) complex are reversible process but Co(II) / Co(I) process of Cobalt(SND) complex is irreversible, and oxygen adduct complexes to quasi reversibly with oxygen should be very closed related to the redox potentials of range, $E_{pc}$ = -0.80~-0.89V and $E_{pa}$ = -0.70~-0.76V.

  • PDF

Electrochemical Properties of Oxygen Adducts Tetradentate Schiff Base Cobalt (II) Complexes in Pyridine (Ⅲ) (Pyridine 용액에서 네자리 Schiff Base Cobalt (II) 착물들의 산소첨가 생성물에 대한 전기화학적 성질 (제 3 보))

  • Ky Hyung Cho;Seong Seob Seo;Dong Chul Chon
    • Journal of the Korean Chemical Society
    • /
    • v.33 no.3
    • /
    • pp.295-303
    • /
    • 1989
  • Tetradentate Schiff base cobalt(II) complex; Co(SND) and Co(SOPD) were synthesized, and these complexes were allowed to react with dry oxygen to form oxygen adducts cobalt(III) complexes such as $[Co(SND)(Py)]_2O_2$ and $[Co(SOPD)(Py)]_2O_2$ in pyridine. These complexes have been identified by IR specta, T.G.A., magnetic susceptibilities measurements and elemental analysis. It has been found that the oxygen adducts coblat(III) complexes have hexacoordinated octahedral configuration with tetradentate Schiff base cobalt(II), pyridine and oxygen, and the mole ratio of oxygen to cobalt(II) complexes are 1;2. The redox reaction processes of $Co(SND)(Py)_2$ and $Co(SOPD)(Py)_2$ complexes were investigated by cyclic voltammetry with glassy carbon electrode in 0.1M TEAP pyridine. The result of redox reaction processes of Co(III)/Co(II) and Co(II)/Co(I) for $Co(SND)(Py)_2$ and $Co(SOPD)(Py)_2$ complexes are reversible or quasi reversible process but oxygen adducts complexes are irreversible processes. Redox process for oxygen of oxygen adducts complexes was quasi reversible and redox range of potential was $E_{pc}\;=\;-0.96{\sim}-1.03V$ and $E_{pa}\;=\;-0.78{\sim}-0.80V.$

  • PDF

Studies on the Electrochemical Properties of Oxygen Adducts Tetradentate Schiff Base Cobalt (Ⅱ) Complexes in Aprotic Solvents (Ⅱ) (비수용매에서 네자리 Schiff Base Cobalt (II) 착물들의 산소첨가 생성물에 대한 전기화학적 성질에 관한 연구 (제 2 보))

  • Ki-Hyung Chjo;Jin-Soon Chung;Heui-Suk Ham;Seoing-Seob Seo
    • Journal of the Korean Chemical Society
    • /
    • v.33 no.2
    • /
    • pp.192-202
    • /
    • 1989
  • Tetradentate schiff bases cabalt (II) complexes; Co(SED) and Co(ο-BSDT) were synthesized and these complexes allowed to reaction with dry oxygen to form oxygen adduct cobalt(III) complexes such as $[Co(o-BSDT)(DMSO)]_2O_2,\;[Co(SED)(Py)]_2O_2\;and\;[Co(o-BSDT)(Py)]_2O_2$ in DMSO and pyridine solutions. It has been found that the oxygen adduct cobalt(III) complexes have hexacoordinated octahedral configuration with tetradentate schiff base cobalt(II), DMSO or pyridine and oxygen, and the mole ratio of oxygen to cobalt(II) complexes are 1:2. The redox processes, were investigated for Co(SEDT) and Co(ο-BSD) complexes in 0.1M TEAP-DMSO and 0.1M TEAP-pyridine by cyclic voltammetry with glassy carbon electrode. As a result the redox processes of Co(II)/Co(III) and Co(II)/Co(I) found to be reversible or quasi-reversible for non uptake oxygen complexes but oxygen adduct complexes found to be irreversible processes and reaction processes of oxygen for oxygen adduct complexes are quasi-reversible process, the potential range was $E_{pc}=-0.85{\sim}-1.19V\;and\;E_{pa}=-0.74{\sim}-0.89V$.

  • PDF

Studies on Electroanalytical Chemistry for the Oxygen Adducted Tetradentate Schiff base Cobalt(III) Complexes in Pyridine Solution (Pyridine 용액에서 산소 첨가된 네자리 Schiff base Cobalt(III) 착물들의 전기 분석화학적 연구)

  • Rim, Chae-Pyeong;Chae, Hee-Nam;Chjo, Ki-Hyung;Choi, Yong-Kook
    • Analytical Science and Technology
    • /
    • v.8 no.1
    • /
    • pp.55-62
    • /
    • 1995
  • Tetradentate Schiff base cobalt(II) complexes such as $Co(II)_2-N$, N-bis(salicylidene)-m-phenylendiimine; [$Co(II)_2(SMPD)_2(H_2O)_4$] and $Co(II)_2-N$, N-bis(salicylidene)-p-phenylendiimine: [$Co(II)_2(SPPD)_2(H_2O)_4$], and oxygen adducted cobalt (III) complexes such as [$Co(III)_2O_2(SMPD)_2(Py)_2$] and [$Co(III)_2O_2(SPPD)_2(Py)_2$] in pyridine solutions were synthesized. It was identified that the oxygen adducted cobalt(III) complexes have hexacoordinated octahedral configuration with pyridine and oxygen from the measurement of elemental analysis, AA, IR spectra, and TGA. The redox processes were investigated for the oxygen adducted complexes in 0.1M TEAP-pyridine solution, using cyclic voltammetry on the glassy carbon electrode. The redox processes of oxygen adducted Co(III) complexes result in $$[Co(III)_2-O_2-CO(III)]\rightarrow^{e^-}[Co(III)-O_2-Co(II)]\rightarrow^{e^-}[Co(II)-O_2-Co(II)]\rightleftarrows^{e^-}[Co(II)+Co(II)+O_2{\cdot}^-]\rightleftarrows^{e^-}[Co(II)+Co(I)+O_2{\cdot}^-]\rightleftarrows^{e^-}[Co(I)+Co(I)+O_2{\cdot}^-]$$.

  • PDF

Synthesis, Antibacterial and Antifungal Activities of Some Cobalt(II) and Nickel(II) Complexes of Thiosemicarbazones (Thiosemicarbazones의 몇 가지 코팔트(II) 및 니켈(II) 착물에 대한 합성, 항박테리아 및 항균 활성)

  • Prasad, Surendra;Agarwal, Ram K.
    • Journal of the Korean Chemical Society
    • /
    • v.55 no.2
    • /
    • pp.189-198
    • /
    • 2011
  • In the present paper two new thiosemicarbazones i.e., 4[N-(4'-ethylbenzalidene)amino]antipyrine thiosemicarbazone (EBAAPTS) and 4[N-(2',4'-dimethylbenzalidene)amino]antipyrine thiosemicarbazone (DMBAAPTS) have been synthesized and characterized. The complexing abilities of these thiosemicarbazones i.e. EBAAPTS and DMBAAPTS towards cobalt(II) and nickel(II) salts have been explored. The reactions of the hot ethanolic solutions of cobalt(II) and nickel(II) salts with EBAAPTS and DMBAAPTS led to the formation of the novel complexes of general composition [$MX_2(L)H_2O$] (M=$Co^{2+}$ or $Ni^{2+}$; X=$Cl^-$, $Br^-$, $NO_3^-$, $NCS^-$ or $CH_3COO^-$; L=EBAAPTS or DMBAAPTS). The newly synthesized complexes have been characterized by elemental analyses, molar mass, molar conductance, magnetic susceptibility, infrared and electronic spectral studies. The molar conductance measurements of the complexes in nitrobenzene correspond to their non-electrolytic nature. All the complexes are of high-spin type. On the basis of spectral studies an octahedral geometry has been assigned for Co(II) and Ni(II) complexes of the type [$MX_2(L)H_2O$]. These complexes were screened for their antibacterial and antifungal activities on different species of pathogens, fungi and bacteria and their biopotency has been discussed.

Synthesis and Characterization of Cobalt(II)/(III), Nickel(II) and Copper(II) Complexes of New 14, 15 and 16-Membered Macrocyclic Ligands

  • El-Tabl, Abdou Saad
    • Bulletin of the Korean Chemical Society
    • /
    • v.25 no.12
    • /
    • pp.1757-1763
    • /
    • 2004
  • A new series of nickel(II), cobalt(II)/(III) and copper(II) complexes of 14, 15 and 16-membered of macrocyclic ligands have been prepared and characterized by elemental analyses, IR, UV-VIS and $^1H-NMR$ spectra, magnetic susceptibilities, conductivities, DTA and ESR measurements. Molar conductances in DMF solution indicate that, the complexes are nonelectrolytes except (9-12) complexes. The electronic spectra show that, all complexes are square planar or distorted octahedral geometry. The ESR spectra of solid complexes (4), (8) and (11) show square planar of axial type symmetry $(d_{x2-y2})$ with considerable covalent bond character. However, complex (12) shows a spectrum of octahedral geometry with $d_{z2}$ ground state. Complex (12) shows exploitation in reducing the amount of electron adducts formed in DNA during irradiation with low radiation products.

Synthesis, Physico-Chemical and Biological Properties of Complexes of Cobalt(II) Derived from Hydrazones of Isonicotinic Acid Hydrazide (Isonicotinic Acid Hydrazide의 Hydrazone으로부터 유도된 코발트(II) 착물의 합성, 물리-화학 및 생물학적 성질)

  • Prasad, Surendra;Agarwal, Ram K.
    • Journal of the Korean Chemical Society
    • /
    • v.53 no.1
    • /
    • pp.17-26
    • /
    • 2009
  • Hydrazones of isonicotinic acid hydrazide, viz., N-isonicotinamido-furfuralaldimine (INH-FFL), N-isonicotnamido-cinnamalidine (INH-CIN) and N-isonicotnamido-3',4',5'-trimethoxybenzaldimine (INH-TMB) were prepared by reacting isonicotinic acid hydrazide with respective aromatic aldehydes, i.e., furfural, cinnamaldehyde or 3,4,5-trimethoxy-benzaldehyde. A new series of fifteen complexes of cobalt(II) with these new hydrazones, INH-FFL, INH-CIN and INH-TMB, were synthesized by their reaction with cobalt(II) salts. The infrared spectral data reveal that hydrazone ligands behave as a bidentate ligand with N, O donor sequence towards the $Co^{2+}$ ion. The complexes were characterized on the basis of elemental analysis, magnetic susceptibility, conductivity, infrared and electronic spectral measurements. Analytical data reveal that the complexes have general composition [Co($L)_2X_2]\;and\;[Co(L)_3](ClO_4)_2$ where L= INH-FFL, INH-CIN or INH-TMB and X = $Cl^-,{NO_3}-,\;NCS^-\;or\;CH_3COO^-.$ The thermal behaviour of the complexes were studied using thermogravimetrictechnique. Electronic spectral results and magnetic susceptibility measurements are consistent with the adoption of a six-coordinate geometry for the cobalt(II) chelates. The antimicrobial properties of cobalt(II) complexes and few standard drugs have revealed that the complexes have very moderate antibacterial activities.

Electrochemical Properties of Binuclear Tetradentate Schiff Base Cobalt(II), Nickel(II) and Copper(II) Complexes in Nonaqueous Solvents. (V) (비수용매에서 이핵성 네자리 Schiff Base Cobalt(II), Nickel(II) 및 Copper(II) 착물들의 전기화학적 성질 (제 5 보))

  • Chjo Ki-Hyung;Choi Yong-Kook;Lee Song-Ju;Kim Chan-Young;Rim Chae-Pyeong
    • Journal of the Korean Chemical Society
    • /
    • v.36 no.5
    • /
    • pp.709-719
    • /
    • 1992
  • We synthesized the binuclear tetradentate Schiff base cobalt(II), nickel(II) and copper(II) complexes such as [Co(II)_2(TSBP)(L)_4], [Ni(II)_2(TSBP)(II)_4] and [Cu(II)_2(TSBP)] (TSBP: 3,3',4,4'-tetra(salicylideneimino)-1,1'-biphenyl, L: Py, DMSO and DMF). We identified the binucleated structure of these complexes by elemental analysis, IR-spectrum, UV-visible spectrum, T.G.A. and D.S.C. According to the results for cyclic voltammogram and differential pulse polarogram of 1 mM complexes in nonaqueous solvents included 0.1M TEAP-L (L; Py, DMSO and DMF) as supporting electrolyte, it was found that diffusionally controlled redox processes of four steps through with one electron for binucleated Schiff base Cobalt(II) complex was Co(III)_2 {^\longrightarrow \\_\longleftarrow^e^-}Co(III)Co(II)_2{^\longrightarrow \\_\longleftarrow^e^-}Co(II){^\longrightarrow \\_\longleftarrow^e^-}Co(I){^\longrightarrow \\_\longleftarrow^e^-}Co(I)_2 and two steps with one electron for Nickel(II) and Copper(II) complexes were M(II)_2 {^\longrightarrow \\_\longleftarrow^e^-}M(I)M(I){^\longrightarrow \\_\longleftarrow^e^-}M(I)_2 (M; Ni and Cu) in nonaqueous solvents.

  • PDF

Electrochemical and Spectroelectrochemical Studies of Cobalt Salen and Salophen as Oxygen Reduction Catalysts

  • Bertha Ortiz;Park, Su Mun
    • Bulletin of the Korean Chemical Society
    • /
    • v.21 no.4
    • /
    • pp.405-411
    • /
    • 2000
  • Electrochemical and spectroelectrochemical studies of cobalt-Schiff (Co-SB) base complexes, Co(salen) [N-N'-bis(salicylaldehyde)-ethylenediimino cobalt(II)] and Co(salophen) [N-N'-bis(salicylaldehyde)-1,2-pheny-lenediimino cobalt(II)], have been c arried out to test them as oxygen reduction catalysts. Both compounds were found to form an adduct with oxygen and exhibit catalytic activities for oxygen reduction. Comparison of spec-tra obtained from electrooxidized complexes with those from Co-SB complexes equilibrated with oxygen in-dicates that the latter are consistent with the postulated complex formed with oxygen occupying the coaxial ligand position, namely, Co(III)-SB·O2 - .The catalysis of oxygen reduction is thus achieved by reducing Co(III) in the oxygen-Co-SB adduct, releasing the oxygen reduction product, e.g., O2 - ., from the Co(II)-SB complex.