• Title/Summary/Keyword: Coaxial Nozzle

Search Result 69, Processing Time 0.021 seconds

A Preliminary Configuration Design of Methane/Oxygen Bipropellant Small-Rocket-Engine through Theoretical Performance Analysis (이론성능해석에 의한 메탄/산소 이원추진제 소형로켓엔진의 예비형상설계)

  • Bae, Seong Hun;Jung, Hun;Kim, Jeong Soo
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.19 no.3
    • /
    • pp.47-53
    • /
    • 2015
  • Design parameters required for Methane/oxygen bipropellant small-rocket-engine were derived through a theoretical performance analysis. The theoretical performance of the rocket engine was analyzed by using CEA and optimal propellant mixture ratio, characteristic length, and optimal expansion ratio were calculated by assuming chemical equilibrium. A coaxial-type swirl injector was chosen because of its outstanding atomization performance and high combustion efficiency compared to other types of injector and also a bell nozzle with 80% of its full length was designed. The rocket engine configuration with 1.72 MPa of chamber pressure, 0.18 kg/s in total propellant mass flow, and O/F ratio of 2.7 was proposed as a ground-firing test model.

An Experimental Study on the Break-up Characteristics of Twin-Fluid Nozze According to tile Variations of Feeding Mass-ratio (공급 질량비 변화에 따른 2유체 노즐의 액주분열특성에 관한 실험적 연구)

  • Kang, S.J.;Oh, J.H.;Rho, B.J.
    • Journal of ILASS-Korea
    • /
    • v.1 no.1
    • /
    • pp.63-75
    • /
    • 1996
  • The purpose of this study is to investigate the break-up characteristics by taking advantage of a two-phase coaxial nozzle. Air and water are utilized as working fluids and the mass ratio air/water has been controlled to characterize the atomization, diffusion and development of mixing process. By way of a photographic technique, conventional developing structures and diffusion angles have been analyzed systematically with variations of mass ratios. The turbulent flow components of the atomized particles were measured by a two channel LDV system and the data were treated by an on-lined measurement equipment. According to the photographic results the spreading angles decreased because the axial inertia moment was relatively higher than the lateral one with respect to the increase of mass ratio. It is found the jet flow diffuses linearly in a certain limit region while the atomizing characteristics, in terms of the distributions of particle diameters did not show particular differences. It may be expected that these fundamental results can be used as reference data in studying the atomization, breakup and diffusions.

  • PDF

Study for combustion characteristic according to the O/F ratio of low thrust rocket engine using green propellant (친환경 추진제를 사용하는 저추력 엑체로켓엔진의 혼합비에 따른 연소 특성)

  • Jeon, Jun-Su;Kim, Young-Mun;Hwang, O-Sik;Ko, Young-Sung;Kim, Yoo;Kim, Sun-Jin
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.134-137
    • /
    • 2009
  • Combustion tests of a low thrust rocket engine was performed to get combustion characteristics, which used a high concentrated hydrogen peroxide and kerosene as the oxidizer and fuel. The engine consisted of multi injector(six coaxial swirl injectors), chamber, nozzle and catalyst ignition system. The test was carried out by changing O/F ratio from 3.8 to 11.0. The experimental results showed that combustion efficiency was highest at O/F ratio from 5 to 6 and pressure fluctuations of all the range were lower than 5%.

  • PDF

Coaxial Nozzle Electrospraying of Polymer Solutions: Use of Dispersant Flow (고분자 용액의 동축 이중노즐 전기분무: 분산제 흐름의 사용)

  • Kim, Min-Young;Lee, Jong-Hwi
    • Polymer(Korea)
    • /
    • v.35 no.3
    • /
    • pp.254-259
    • /
    • 2011
  • In electrospraying of polymer solutions, metal sample collectors are often ineffective in fully removing solvent from sprayed particles and recovering redispersable sprayed particles. Herein, a novel electro spraying system, where sprayed particles were dispersed into laminar flow of dispersant (coagulation liquid), was designed for the nano-encapsulation of protein drugs. Chitosan and polyacrylic acid were used as the encapsulation materials. Aggregation of particles could be prevented by using this new electrospraying system, and unimodal size distribution was observed at an applied voltage between 4~16 kV and a low flow rate. The effects of the applied voltage on mean particle size were not significant on the other hand.

Conceptual Design of Thrust Chamber for 7 tonf-class Liquid Rocket Engine (7톤급 액체로켓엔진 연소기 개념설계)

  • Kim, Jong-Gyu;Ahn, Kyu-Bok;Joh, Mi-Ok;Choi, Hwan-Seok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2012.05a
    • /
    • pp.454-456
    • /
    • 2012
  • Conceptual design results of a thrust chamber for a 7 tonf-class liquid rocket engine of KSLV-II 3rd stage were described. The engine system for KSLV-II 3rd stage is pump-fed system, the thrust chamber has vacuum thrust of 6.9 tonf, vacuum specific impulse of 336.9 sec, chamber pressure of 70 bar, nozzle expansion ratio of 94.5, total propellant mass flow rate of 20.5 kg/s, mixture ratio(O/F) of 2.45. The thrust chamber consists of mixing head with 90 coaxial swirl injectors and regeneratively combustion chamber cooled by kerosene.

  • PDF

Electrospraying of Micro/Nano Particles for Protein Drug Delivery (단백질 약물 전달을 위한 마이크로/나노 입자의 전기분무 제조법)

  • Yoo, Ji-Youn;Kim, Min-Young;Lee, Jong-Hwi
    • Polymer(Korea)
    • /
    • v.31 no.3
    • /
    • pp.215-220
    • /
    • 2007
  • The control of the surface energy by electrohydrodynamic force provides electrospraying with various potential advantages such as simple particle size control, mono-dispersity, high recovery, and mild processing conditions. The advantages are quite helpful to improve the stability of protein drug and control its release. Herein, the nano-encapsulation of protein drugs using electrospraying was investigated. Albumin as a model protein was processed using uniaxial and co-axial electrospraying, and chitosan, polycaporlactone (PCL), and poly (ethylene glycol) (PEG) were used as encapsulation materials. The major processing parameters such as the conductivity of spraying liquids, flow rate, the distance of electrical potential gradient, etc were measured to obtain the maximum efficiency. In the chitosan systems, mean particles size decreases as flow rate and the distance between nozzle and the collecting part decreases. In the uniaxial technique of the PCL systems, mean particles size decreases as flow rate decreases. In the coaxial technique of the PCL systems, it was found that the particles size gets larger under the application of the higher ratio of inner-to-outer liquid flow rates. The primary particles formed out of an electrospraying nozzle showed narrow particle size distribution, but once they arrived to the collecting part, aggregation behavior was observed obviously. Efficient nano-encapsulation of albumin with PCL, PEG, and chitosan was conveniently achieved using electrospraying at above 12 kV.

Characteristics of Non-premixed Synthetic Natural Gas-Air Flame with Variation in Fuel Compositions (합성천연가스의 조성변화에 따른 확산화염 연소특성)

  • Oh, Jeongseog;Dong, Sangeun;Yang, Jebok
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.37 no.9
    • /
    • pp.829-836
    • /
    • 2013
  • The combustion characteristics with variations in synthetic natural gas (SNG) compositions were studied in a lab-scale combustor. The objective of the current study is to investigate the flame stabilization, flame structure, and spectrometry in a non-premixed SNG flame with varying fuel compositions. For the analysis of light emission in SNG flames, we used a spectrometer. As experimental conditions, the fuel jet velocity at the nozzle exit $u_F$ was varied from 5 to 40 m/s and the coaxial air velocity $u_A$ was varies from 0 to 0.43 m/s. The experiments showed that the flame stability increased with the hydrogen component in SNG.

Combustion Performance Tests of High Pressure Subscale Liquid Rocket Combustors (고압 축소형 연소기의 연소 성능 시험)

  • Kim, Jong-Gyu;Lee, Kwang-Jin;Seo, Seong-Hyeon;Lim, Byoung-Jik;Ahn, Kyu-Bok;Han, Yeoung-Min;Choi, Hwan-Seok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2007.04a
    • /
    • pp.128-134
    • /
    • 2007
  • Combustion performance and characteristics of high-pressure subscale liquid rocket combustors were studied experimentally. Four different models of combustor were considered in this paper. The high-pressure subscale combustor is composed of the mixing head, the water cooling cylinder and the nozzle. One model of the combustors employed regenerative cooling combustor in that the kerosene used for the chamber cooling is burned. This combustor was damaged due to a high frequency combustion instability occurred during a firing test. The results of the firing tests, comparison of performance, and characteristics of static and dynamic pressures of the combustors are described.

  • PDF

Improvement of Sensing Properties in Nanowires/Nanofibers by Forming Shells Using Atomic Layer Deposition (원자층증착법으로 형성된 셀형성을 이용한 나노선/나노섬유 화학센서의 감응성 향상)

  • Kim, Jae-Hun;Park, Yu-Jeong;Kim, Jin-Yeong;Kim, Sang-Seop
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2016.11a
    • /
    • pp.96-96
    • /
    • 2016
  • 나노섬유(nanofiber), 나노선(nanowire), 그리고 나노튜브(nanotube)와 같은 1차원 구조의(one-dimensional structure) 나노재료는 벌크(bulk) 및 박막(film) 재료와는 다르게 물리적, 화학적으로 특이한 성질을 가지고 있으며, 이러한 성질은 나노재료의 구조, 형상, 크기 등에 큰 영향을 받는다. 첫 째, 전기방사(electrospinning) 공정을 이용한 나노섬유의 합성; 용액의 특성, 전기장 세기, 방사시간 등의 변수를 조절하게 되면 방출되는 재료의 형상을 입자 혹은 섬유상의 형태로 얻을 수 있으며, 전기방사를 통해 합성된 나노재료의 소결 온도 및 시간을 달리함으로써 나노입자의 크기를 조절할 수 있다. 또한, 템플레이트 합성법(template synthesis) 및 이중노즐(coaxial nozzle)을 이용해 속이 빈 형태인 중공(hollow) 구조의 나노섬유를 얻을 수 있으며, 전기방사에 사용되는 전구물질에 원하는 금속 및 산화물을 첨가함으로써 복합체(composite) 나노섬유를 얻을 수 있다. 둘 째, VLS(Vapor-Liquid-Solid) 공정을 이용한 나노선의 성장; 온도, 압력, 전구물질의 양, 그리고 시간 등의 변수를 조절하게 되면 원하는 직경 및 길이를 갖는 나노선을 성장시킬 수 있다. 그리고 ALD(Atomic Layer Deposition)를 이용해 나노선에 추가적인 층을 형성함으로써 코어-셀 구조를 형성할 수 있으며, 감마선, UV와 같은 공정을 이용해 귀금속 촉매를 나노선에 기능화 시킬 수도 있다. 코어-셀 구조를 갖는 나노선/나노섬유는 코어 혹은 셀 층의 전자나 홀의 이동을 유발하여 전자공핍층(electron depletion layer) 또는 정공축적층(hole accumulation layer)을 확대 및 축소시켜 센서의 초기저항을 증가시키거나 감소시키는 역할로써 이용되고 있으며, 특히, 셀 층의 두께가 셀 층 재료의 Debye length와 유사한 크기를 갖게 되면, 셀 층은 완전공핍층(fully depleted layer)을 형성해 최대의 감도를 나타낼 수 있다. 본 연구에서는 다양한 제조 공정을 통해 제작될 수 있는 1차원 나노-구조물을 가스센서에 적용하는 사례들을 소개하고, 이러한 가스센서의 감응성능을 향상시키기 위한 방법의 한 가지로 원자층증착법으로 나노선/나노섬유의 표면에 셀층을 형성하여 감응성 향상 메커니즘 및 관련 주요 변수들을 조사하고자 한다.

  • PDF