• Title/Summary/Keyword: Coaxial Jet

검색결과 109건 처리시간 0.23초

다공성재를 이용한 동축형 분사기의 미립화특성 (Atomizing Characteristics of Coaxial Porous Injectors)

  • 김도헌;신정환;이인철;구자예
    • 한국분무공학회지
    • /
    • 제17권1호
    • /
    • pp.35-44
    • /
    • 2012
  • To improve the mixing and atomizing performance at the center region of the conventional coaxial shear injector spray, the concept of a coaxial porous injector was invented. This novel injection concept for liquid rocket engines utilizes the Taylor-Culick flow in the cylindrical porous tube. The 2-dimensional injector, which can be converted in three injection configurations, was fabricated, and several cold flow tests using water-air simulant propellant was performed. The hydraulic characteristics and the effects of a gas flow condition on the spray pattern and the Sauter mean diameter (SMD) was analyzed for each configuration. The atomizing mechanism of coaxial porous injector was different with the coaxial shear injector, and it was explained by the momentum of the gas jet, which is injected normally against the center liquid column, and by the secondary disintegration at the wavy interface of liquid jet, which was generated at the recessed region. The SMD of 2D coaxial porous injector, which has higher gas momentum, was measured and it shows better atomizing performance at the center and outer side of spray than the 2D coaxial shear injector.

초음속 동축 스월제트의 유동특성에 대한 연구 (Study of Supersonic, Dual, Coaxial, Swirl Jet)

  • 김중배;이준희;이권희;김희동
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2003년도 제20회 춘계학술대회 논문집
    • /
    • pp.15-18
    • /
    • 2003
  • The present study addresses an experimental investigations of the near field flow structures of supersonic, dual, coaxial, swirl jet. The swirl stream is discharged from the secondary annular nozzle and the primary inner nozzle provides the sonic and supersonic free jets. The interactions between the secondary swirl and inner soni $c^ersonic jets are quantified by a fine pilot impact and static pressure measurements and are visualized by using a shadowgraph optical method. The pressure ratios of the secondary swirl and primary soni $c^ersonic jets are varied below 7.0. Experiments are conducted to investigate the effects of the secondary swirl stream on the primary sonic and supersonic jets, compared with the secondary stream of no swirl. The results show that the presence of annular swirl stream causes the Mach disk to move more downstream, with the increased diameter, and remarkably reduces the fluctuations of the impact pressures in the supersonic dual coaxial jet, compared with the case of the secondary annular stream of no swirl.swirl.

  • PDF

초음속 이중동축 스월제트 유동특성에 관한 연구 (Study of Supersonic, Dual, Coaxial, Swirl Jet)

  • 김중배;김희동;이권희;세토구치
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 춘계학술대회
    • /
    • pp.1771-1776
    • /
    • 2003
  • The supersonic swirl jet is being extensively used in many diverse fields of industrial processes since those lead to more improved performance, compared with the conventional supersonic no swirl jet. In the present study, an experiment is carried out to investigate the effect of annular swirl jet on the supersonic dual coaxial jet. A convergent-divergent nozzle with a design Mach number of 1.5 is used for the supersonic primary jet, and the sonic nozzles with four tangential inlets are used to make the secondary swirl jet. The primary jet pressure ratio is varied in the range from 3.0 to 7.0 and the outer annular jet pressure ratio is from 1.0 to 4.0. The interactions between the annular swirl and the inner supersonic jet are quantified by the pitot impact and static pressure measurements and visualized by using the Schlieren optical method. The results show that annular swirl jet alters the shock structure and impact pressure distributions compared with no swirl jet.

  • PDF

동축형 스월-제트 분사기의 음향가진에 따른 동특성 (Dynamic Characteristics of Coaxial Swirl-jet Injector with Acoustic Excitation)

  • 배진현;김태성;정석규;정찬영;최정열;윤영빈
    • 한국추진공학회지
    • /
    • 제22권4호
    • /
    • pp.99-107
    • /
    • 2018
  • 본 연구에서는 제트 유동 증가에 따라 스피커로 제트와 스월 유동에 각각 가진을 가하여 기체-기체 동축형 제트-스월 분사기의 분사기 전달함수(Injector Transfer Function, ITF)을 측정하였다. 공급시스템의 길이를 변화시켜 ITF를 측정한 결과 공급시스템의 공진주파수에서 피크가 발생하는 것을 확인할 수 있었다. 제트 유동에 가진을 줄 때, 제트 유동이 증가함에 따라 ITF의 크기는 감소하다가 다시 증가하는 것을 확인할 수 있었다. 즉, 두 유동의 속도차가 클수록 ITF의 크기가 증가하였다. 스월 가진 시 제트 유동이 증가함에 따라 ITF가 감소하는 것을 확인할 수 있었는데, 이는 후단에서 일정 유량 대비 가진 에너지가 감소하기 때문이다.

동축공기 수소확산 화염의 자기상사성에 대한 연구 (A Study on Self-Similarity in Turbulent Hydrogen Jet Flames with Coaxial Air)

  • 김문기;김승한;윤영빈
    • 한국항공우주학회지
    • /
    • 제30권5호
    • /
    • pp.71-78
    • /
    • 2002
  • 동축공기 수소확산 화염에서 세 가지 동축공기 조건과 화염의 유무에 따라 실험조건을 분류하고, 이에 대해 PIV를 이용하여 실험을 수행하였다. PIV를 통해 얻은 속도장을 이용하여 평균속도, 난류강도, Reynolds stress 등을 구하여 유동장을 분석하였다. 우선 단순제트에 대해 상사성을 살펴본 결과 이전의 다른 연구자의 실험결과와 일치하였다. 동축공기가 있는 경우 중심축 속도 감쇠는 $x^{-1}$에 비례하여 감소하는 것을 확인하였다. 축방향 길이를 유효밀도에 의해 정의된 유효 제트 지름으로 무차원화한 값으로 중심축 속도를 도시한 결과 하나의 선분에 떨어지는 것을 확인하였다. 평균속도 분포를 살펴보면 일정한 연료유량에 동축공기 유량을 증가시킨 경우 동축공기가 증가함에 따라 속도 분포의 형태가 바뀌게 되어 자기상사성이 유지되지 않는 것으로 보인다. 난류강도는 평균속도 분포의 경우보다 후류에서 자기상사성이 나타난다.

질소 희석이 수소 난류확산화염의 화염안정성에 미치는 영향 (The Effect of N2 Dilution on the Flame Stabilization in a Non-Premixed Turbulent H2 Jet with Coaxial Air)

  • 오정석;윤영빈
    • 대한기계학회논문집B
    • /
    • 제33권7호
    • /
    • pp.477-485
    • /
    • 2009
  • The study of nitrogen dilution effect on the flame stability was experimentally investigated in a non-premixed turbulent lifted hydrogen jet with coaxial air. Hydrogen gas was used as a fuel and coaxial air was used to make flame liftoff. Each of hydrogen and air were injected through axisymetric inner and outer nozzles ($d_F=3.65\;mm$ and $d_A=14.1\;mm$). And both fuel jet and coaxial air velocity were fixed as $u_F=200\;m/s$ and $u_A=16\;m/s$, while the mole fraction of nitrogen diluents gas was varied from 0.0 to 0.2 with 0.1 step. For the analysis of flame structure and the flame stabilization mechanism, the simultaneous measurement of PIV/OH PLIF laser diagnostics had been performed. The stabilization point was selected in the most upstream region of the flame base and defined as the point where the turbulent flame propagation velocity was equal to the axial component of local flow velocity. We found that the turbulent flame propagation velocity increased with the decrease of nitrogen mole fraction. We concluded that the turbulent flame propagation velocity was expressed as a function of turbulent intensity and axial strain rate, even though nitrogen diluents mole fraction was changed.

레이저 가공에서 동축/탈축 보조가스의 충돌특성에 관한 수치해석적 연구 (Computational Study of Impingement Characteristics of Assist Gas from Coaxial/Off-axis Nozzles in Laser Machining)

  • 윤시경;성홍계;이열
    • 한국기계가공학회지
    • /
    • 제9권5호
    • /
    • pp.14-19
    • /
    • 2010
  • A computational study was carried out to analyze the characteristics of supersonic (Mach 2.0) coaxial/off-axis jet's impingements on a slanted kerf surface in laser machining. The effects of various parameters such as gas pressure, distance between nozzle exit and kerf edge surface, and application of off-axis nozzles on the impingement phenomena of the assist-gas on kerf surface were observed. The present study showed that simply increasing the assist-gas pressure for coaxial supersonic nozzle was not effective to alleviate the strength of flow separation on kerf surface. It also presented the optimized operating condition of the coaxial nozzle to have the highest skin friction values over kerf surface.

PLIF and PIV Measurements of Jet Flames with Acoustically Forced Coaxial Air Jets

  • Han Jeong Jae;Kim Munki;Yun Sang Wook;Yoon Youngbin
    • 한국가시화정보학회지
    • /
    • 제3권2호
    • /
    • pp.51-56
    • /
    • 2005
  • Acoustic excitations were imposed to coaxial air jet of non-premixed jet flame with hydrogen gaseous injected axially in the center of the flow. The frequencies of excitation were three dominant resonant frequencies at 1L, 2L, 3L. modes including specially 514 Hz (2L-mode) which was estimated theoretically as longitudinal mode of combustor characteristics. The mixing enhancement by acoustic forcing has been investigated quantitatively using PLIF and PIV. The effect of acoustic excitation on combustion process was significant to enhance mixing rate that coincides with specific resonant frequencies. And the behavior of vortex-interaction on flame structure was a good evidence to investigate the phenomenon of shear/mixing layer of fuel-air jet structure. The results obtained in this study concludes that generated streamwise vortex by acoustic excitation has a potential to enhance the mixing rate and abating NOx emissions.

  • PDF

음파가진에 의한 동축 $CO_2$/공기 제트의 농도변동 특성 연구 (Concentration Fluctuation of a Coaxial $CO_2$/Air Jet Excited Acoustically)

  • 한용식;김명배;김태권
    • 연구논문집
    • /
    • 통권23호
    • /
    • pp.57-62
    • /
    • 1993
  • An experimental investigation was carried out to study the characteristics of concentration of a coaxial jet being tone excited and consisting of $CO_2$, and air. The concentration in a binary gas mixture was measured by using the hot-wire anemometer and flow visualization was performed by the schlieren technique. In the case of excited flow, it is found that acoustic energy is partially transferred to RMS concentration to enhance mixing.

  • PDF

동축공기 수소확산화염에서 화염-와류 상호작용 및 혼합 (Flame-Vortex Interaction and Mixing in Turbulent Hydrogen Diffusion Flames with Coaxial Air)

  • 김문기;오정석;최영일;윤영빈
    • 한국가시화정보학회:학술대회논문집
    • /
    • 한국가시화정보학회 2007년도 추계학술대회
    • /
    • pp.149-154
    • /
    • 2007
  • This study examines the effect of acoustic excitation using forced coaxial air on the flame characteristics of turbulent hydrogen nonpremixed flames. A resonance frequency was selected to acoustically excite the coaxial air jet due to its ability to effectively amplify the acoustic amplitude and reduce flame length and NOx emissions. Acoustic excitation causes the flame length to decrease by 15 % and consequently, a 25 % reduction in EINOx is achieved, compared to a flame without acoustic excitation. Moreover, acoustic excitation induces periodical fluctuation of the coaxial air velocity, thus resulting in slight fluctuation of the fuel velocity. From phase-lock PIV and OH PLIF measurement, the local flow properties at the flame surface were investigated under acoustic forcing. During flame-vortex interaction in the near field region, the entrainment velocity and the flame surface area increased locally near the vortex. This increase in flame surface area and entrainment velocity is believed to be a crucial factor in reducing flame length and NOx emission in coaxial jet flames with acoustic excitation. Local flame extinction occurred frequently when subjected to an excessive strain rate, indicating that intense mass transfer of fuel and air occurs radially inward at the flame surface.

  • PDF