• Title/Summary/Keyword: Coating material of spray

Search Result 164, Processing Time 0.019 seconds

Wear behaviors of HVOF spray coating of Co-alloy T800

  • Cho, Tong-Yul;Yoon, Jae-Hong;Kim, Kil-Su;Park, Bong-Kyu;Youn, Suk-Jo;Back, Nam-Ki;Chun, Hui-Gon
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.16 no.3
    • /
    • pp.121-126
    • /
    • 2006
  • HVOF thermal spray coating of Co-alloy T800 is progressively replacing the classical hard coatings such as chrome plating because of the very toxic $Cr^{6+}$ ion known as carcinogen causing lung cancer. For the study of the possibility of replacing of chrome plating, the wear properties of HVOF Co-alloy T800 coatings are investigated using the reciprocating sliding tester both at room and at an elevated temperature of $1000^{\circ}F\;(538^{\circ}C)$. The possibility as durability improvement coating is studied for the application to the high speed spindles vulnerable to frictional heat and wear. Wear mechanisms at the reciprocating sliding wear test are studied for the application to the systems similar to the sliding test such as high speed spindles. Wear debris and frictional coefficients of T800 coatings both at room and at an elevated temperature of $1000^{\circ}F\;(538^{\circ}C)$ are drastically reduced compared to those of non-coated surface of parent substrate Inconel 718. This study shows that the coating is recommendable for the durability improvement coatings on the surfaces vulnerable to frictional heat. The sliding surfaces are weared by the mixed mechanisms such as oxidative wear, abrasion by the sliding ball slurry erosion by the mixture of solid particles and small drops of the melts and semi-melts of the attrited particles cavitation by the relative motions among the coating, sliding ball, the melts and semi-melts. and corrosive wear. The oxide particles and the melts and semi-melts play roles as solid and liquid lubricant reducing the wear and friction coefficient.

The Effects of Water Addition on the Color and Crystalline Phase of Y2O3 Coatings Fabricated by Plasma Suspension Spray

  • Park, Sang-Jun;Lee, Jung-Ki;Oh, Yoon-Suk;Kim, Seongwon;Kim, Hyungsun;Lee, Sung-Min
    • Journal of the Korean Ceramic Society
    • /
    • v.53 no.6
    • /
    • pp.641-646
    • /
    • 2016
  • The effects of water addition on $Y_2O_3$ coatings or thick films prepared by plasma suspension spray (SPS) have been investigated. Water addition in suspension media was found to be effective to control the color of a $Y_2O_3$ coating prepared by SPS. The color changed with water addition at the shortest stand-off distance of 50 mm even if samples had the same crystalline phase. Change was not correlated with fragmentation behavior of liquid suspension inside the plasma jet. Water content over 50 vol% was found to produce unmelted particles, indicating that water suppressed heat transfer to the particles. However, plasma jet temperature was not affected. Instead, the coating fabricated with water addition has higher oxygen and lower carbon content compared to these characteristics of the coating without water addition. This was attributed to the retarded complete evaporation of liquid media from the suspension droplet, resulting in inhibition of excessive heating and evaporation of the molten $Y_2O_3$ droplet. In this regard, crystalline phase development with respect to stand-off distance and water addition was discussed.

Optimization of Microencapsulation of Inonotus obliquus Extract Powder by Response Surface Methodology and Its Application into Milk

  • Ahn, Sung-Il;Chang, Yoon-Hyuk;Kwak, Hea-Soo
    • Food Science of Animal Resources
    • /
    • v.30 no.4
    • /
    • pp.661-668
    • /
    • 2010
  • This study was carried out to optimize microencapsulation conditions for Inonotus obliquus extract powder with mediumchain triacylglycerol (MCT) using response surface methodology (RSM), and to determine the possibility of adding encapsulated I. obliquus extract to milk toward improving the functionality of milk. and to investigate the effects of added encapsulated I. obliquus extract on the physicochemical and sensory properties of the product. The microencapsulation efficiency of I. obliquus extract powder was investigated with respect to three variables (ratios of core material to coating material, amounts of water added, and spray pressure) in RSM. The optimal conditions for microencapsulation of I. obliquus extract powder were obtained from the ratio of core material to coating material (2.92:10) and the amount of water added (0.5 mL); the spray pressure had an insignificant effect on the microencapsulation (p<0.05). Adding encapsulated I. obliquus extract into milk did not significantly affect either color (L, a and b values) or thiobarbituric acid (TBA) values. Sensory test revealed that there were significant improvements in brownish, herb flavor, and bitterness scores for encapsulated I. obliquus extract-added milk as compared with those for uncapsulated I. obliquus extract-added milk. Based on the data obtained from the present study, it is concluded that microcapsules of I. obliquus extract powder could be applicable to milk without remarkably adverse effects on physicochemical and sensory properties

Release proporties of ovalbumin from alginate microspheres prepared using the nozzle in spray dryer system

  • Park, Jeong-Eun;Lee, Chang-Moon;Park, Hee-Jung;Kim, Gwang-Yun;Rhee, Joon-Haeng;Lee, Ki-Young
    • 한국생물공학회:학술대회논문집
    • /
    • 2005.04a
    • /
    • pp.570-573
    • /
    • 2005
  • The spray method was chiefly used to prepare alginate microspheres. Additionally due to formation at mild conditions, the alginate microspheres were coated with chitosan. The particle size of alginate microspheres increased when the sodium alginate increased. Release pattern of OVA in alginate microspheres was evaluated at PBS buffer(pH 7.4) and HCl buffer(pH 1.2). Release rate of OVA from chitosan/alginate microsphere was also lower than that with the concentration of alginate in the microspheres, the amount of OVA released from alginate microspheres increased from alginate micorsphere. Therefore, the alginate microspheres can be prepared by spray rozzle for a protein drug delivery. OVA release from the alginate microspheres was controlled by a coating with chitosan.

  • PDF

Effect of Deposition Parameter and Mixing Process of Raw Materials on the Phase and Structure of Ytterbium Silicate Environmental Barrier Coatings by Suspension Plasma Spray Method (서스펜션 플라즈마 스프레이 코팅법으로 제조된 Ytterbium Silicate 환경차폐코팅의 상형성 및 구조에 미치는 증착인자 및 원료혼합 공정의 영향)

  • Ryu, Ho-lim;Choi, Seon-A;Lee, Sung-Min;Han, Yoon-Soo;Choi, Kyun;Nahm, Sahn;Oh, Yoon-Suk
    • Journal of Powder Materials
    • /
    • v.24 no.6
    • /
    • pp.437-443
    • /
    • 2017
  • SiC-based composite materials with light weight, high durability, and high-temperature stability have been actively studied for use in aerospace and defense applications. Moreover, environmental barrier coating (EBC) technologies using oxide-based ceramic materials have been studied to prevent chemical deterioration at a high temperature of $1300^{\circ}C$ or higher. In this study, an ytterbium silicate material, which has recently been actively studied as an environmental barrier coating because of its high-temperature chemical stability, is fabricated on a sintered SiC substrate. $Yb_2O_3$ and $SiO_2$ are used as the raw starting materials to form ytterbium disilicate ($Yb_2Si_2O_7$). Suspension plasma spraying is applied as the coating method. The effect of the mixing method on the particle size and distribution, which affect the coating formation behavior, is investigated using a scanning electron microscope (SEM), an energy dispersive spectrometer (EDS), and X-ray diffraction (XRD) analysis. It is found that the originally designed compounds are not effectively formed because of the refinement and vaporization of the raw material particles, i.e., $SiO_2$, and the formation of a porous coating structure. By changing the coating parameters such as the deposition distance, it is found that a denser coating structure can be formed at a closer deposition distance.

Effect of Heat Treatment on Corrosion Resistance of Zn-Mg-Al Alloy Coated Steel

  • Il Ryoung Sohn;Tae Chul Kim;Sung Ju Kim;Myung Soo Kim;Jong Sang Kim;Woo Jin Lim;Seong Mo Bae;Su Hee Shin;Doo Jin Paik
    • Corrosion Science and Technology
    • /
    • v.23 no.4
    • /
    • pp.283-288
    • /
    • 2024
  • Hot-dip Zn-Mg-Al coatings have a complex microstructure consisting of Zn, Al, and MgZn2 phases. Its crystal structure depends on alloy content and cooling rates. Microstructure and corrosion resistance of these coatings might be affected by heat treatment. To investigate effect of heat treatment on microstructure and corrosion resistance of Zn-Mg-Al coatings, Zn-1.5%Mg-1.5%Al coated steel was heated up to 550 ℃ at a heating rate of 80 ℃/s and cooled down to room temperature. At above 500 ℃, the ternary phase of Zn-MgZn2-Al was melted down. Only Zn and MgZn2 phases remained in the coating. Heat- and non-heat-treated specimens showed similar corrosion resistance in Salt Spray Test (SST). When a Zn-3.0%Mg-2.5%Al coated steel was subjected to heat treatment at 100 ℃ or 300 ℃ for 200 h and compared with GA and GI coated steels, the microstructure of coatings was not significantly changed at 100 ℃. However, at 300 ℃, most Al in the coating reacted with Fe in the substrate, forming a Fe-Al compound layer in the lower part of the coating. MgZn2 was preferentially formed in the upper part of the coating. As a result of SST, Zn-Mg-Al coated steels showed excellent corrosion resistance, better than GA and GI.

Study of the Standard Testing Specifications for a Non-loading Performance Evaluation of Coating Material-sprayed Circular Steel Structures (뿜칠 피복 원형 철골구조의 비재하 내화성능 평가용 시험체 제안을 위한 연구)

  • Ok, Chi-Yeol;Kim, Jae-Jun
    • Fire Science and Engineering
    • /
    • v.30 no.3
    • /
    • pp.7-15
    • /
    • 2016
  • The cross-sectional shape factor is used worldwide to evaluate the scientific performance of fire-resistant structures. In South Korea, however, a system for applying a cross-sectional shape factor has not been arranged and circular or rectangular steel pipes are commonly used for large-scale steel frame buildings. On the other hand, coating material-spray steel beams and pillars that have received the certification of a fire-resistant structure from recognized organizations are mostly limited to a H-beam. A H-beam is granted a wide range of certifications without size limitations from a non-loading performance test with test standards based on the relevant provisions. Other types of steel pipe are to be certified for fireresistance according to shape. In this study, a cross-sectional shape factor was used to propose standard testing specifications for the application of coating material-sprayed circular and rectangular steel pipes, eventually to set the scope of certification for reasonable fire-resistant structures.

Study on Metal Microfilter Coated with Ceramics by Using Plasma Thermal Spray Method (플라즈마 용사를 이용한 복합세라믹 미세필터 연구)

  • Song, In-Gyu;Lee, Young-Min;Shin, Hyun-Myung;Choi, Hae-Woon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.9
    • /
    • pp.1035-1040
    • /
    • 2011
  • This research was performed on a microfilter made of a hybrid material (ceramic + metal) that was coated with ceramics on the metal-filter surface by using the thermal spray method. The ceramic powders used were $Al_2O_3+40TiO_2$ powder with a particle size of $20{\mu}m$ and $Al_2O_3$ (98%+)powder with a particle size of $45{\mu}m$. The metal filters were filter-grade $20{\mu}m$, $30{\mu}m$, and $50{\mu}m$ sintered metal powder filters (SIKA-R 20 IS, 30 IS, 50 IS; Sinter Metals Filters) and filter-grade $75{\mu}m$ sintered mesh filter with five layers. Ceramic-coated filters that were coated using the thermal spray method had a great influence on powder material, particle size, and coating thickness. However, these filters showed a fine performance when used as micro-filters.

An Electrochemical Evaluation of the Corrosion Properties of the Steel with the Type and the Thickness of Metallizing Coatings (금속용사 코팅제의 종류 및 두께에 따른 강재 내식성의 전기화학적 평가)

  • Kang, Myeong-Sik;Eom, Sung-Hyun;Cho, Yeon-Chul;Ahn, Jae-Woo;Kim, Seong-Soo;Lee, Jeong-Bae
    • Resources Recycling
    • /
    • v.25 no.3
    • /
    • pp.55-62
    • /
    • 2016
  • Steel structures exposed to extremely corrosive environment like marine environments and industrial area are generally manufactured by applying various protection treatment to increase their lifetime. Metal spraying is one of the protection methods to overcome some drawbacks of the widely employed technologies. Therefore, lots of research needs to be done to improve the corrosion resistance of steel structures. In this study, the corrosion resistance of steel structures was evaluated with the variation in the type and thickness of metal spray by measuring the corrosion potential and current density. As a raw material for spraying, Zn, Al and their mixture were employed to obtain coating thickness of $30{\sim}100{\mu}m$. Our data indicated that the pure zinc coating with $100{\mu}m$ showed the lowest corrosion potential. In the case of pure Al and Zn 85%-Al 15%, the corrosion potential and current density was decreased compared to pure zinc. It was found that the corrosion potential was decreased with the increase of coating thickness irrespective of the type of the coating.

Fabrication and Characterization of Cu-based Amorphous Coatings by Cold Spray Process (저온 분사를 이용한 Cu계 비정질 코팅층의 제조 및 특성 연구)

  • Jung, Dong-jin;Park, Dong-Yong;Lee, Jin Kyu;Kim, Hyung Jun;Lee, Kee-Ahn
    • Korean Journal of Metals and Materials
    • /
    • v.46 no.5
    • /
    • pp.321-327
    • /
    • 2008
  • Cu based amorphous ($Cu_{54}Zr_{22}Ti_{18}Ni_6$) coating was produced by cold spraying as a new fabrication process. The microstructure and macroscopic properties of amorphous coating layer was investigated and compared with those of cold sprayed pure Cu coating. Amorphous powders were prepared by gas atomization and Al 6061 was used as the substrate plate. X-ray diffraction results showed that Cu based amorphous powder could be successfully deposited by cold spraying without any crystallization. The Cu based amorphous coating layer ($300{\sim}400{\mu}m$ thickness) contained 4.87% porosity. The hardness of Cu based amorphous coating represented $412.8H_v$, which was correspond to 68% of the hardness of injection casted bulk amorphous material. The wear resistance of Cu based amorphous coating was found to be three times higher than that of pure Cu coating. The 3-point bending test results showed that the adhesion strength of Cu based amorphous coating layer was higher than that pure Cu coating. It was also observed that hard Cu base amorphous particle could easily deform soft substrate by particle collisions and thus generated strong adhesion between coating and substrate. However, the amorphous coating layer unexpectedly represented lower corrosion resistance than pure Cu coating, which might be resulted from the higher content of porosity in the cold sprayed amorphous coating.