• 제목/요약/키워드: Coating fracture

검색결과 176건 처리시간 0.029초

Lifetime Performance of EB-PVD Thermal Barrier Coatings with Coating Thickness in Cyclic Thermal Exposure

  • Lu, Zhe;Lee, Seoung Soo;Lee, Je-Hyun;Jung, Yeon-Gil
    • 한국재료학회지
    • /
    • 제25권10호
    • /
    • pp.571-576
    • /
    • 2015
  • The effects of coating thickness on the delamination and fracture behavior of thermal barrier coating (TBC) systems were investigated with cyclic flame thermal fatigue (FTF) and thermal shock (TS) tests. The top and bond coats of the TBCs were prepared by electron beam-physical vapor deposition and low pressure plasma spray methods, respectively, with a thickness ratio of 2:1 in the top and bond coats. The thicknesses of the top coat were 200 and $500{\mu}m$, and those of the bond coat were 100 and $250{\mu}m$. FTF tests were performed until 1140 cycles at a surface temperature of $1100^{\circ}C$ for a dwell time of 5 min. TS tests were also done until more than 50 % delamination or 1140 cycles with a dwell time of 60 min. After the FTF for 1140 cycles, the interface microstructures of each TBC exhibited a sound condition without cracking or delamination. In the TS, the TBCs of 200 and $500{\mu}m$ were fully delaminated (> 50 %) within 171 and 440 cycles, respectively. These results enabled us to control the thickness of TBC systems and to propose an efficient coating in protecting the substrate in cyclic thermal exposure environments.

플라즈마 코팅한 주조용 알루미늄합금의 마찰 및 마멸특성 (Friction and Wear Characteristics of Plasma Coated Surface of Casting Aluminum Alloy)

  • 채영훈;임정일;박준목;김석삼
    • 대한기계학회논문집A
    • /
    • 제21권5호
    • /
    • pp.791-799
    • /
    • 1997
  • The wear characteristics and wear mechanisms of plasma sprayed Al/sub 2/ O/sub 3/-40%TiO/sub 2/ and Cr/sub 2/O/sub 3/ deposited on casting aluminum alloy(AC4C) were investigated. Specimens were processed for various coating thicknesses. Ball on disk type wear tester was used for wear test. The scratch test on plasma sprayed coating surface showed that critical load to break the coating layer was greater than 40 N. The critical load increase with the increase of coating thickness of specimens. The friction coefficient of Cr/sub 2/O/sub 3/ coating layer was less than that of Al/sub 2/O/sub 3/-40%TiO/sub 2/ coating layer. The wear resistance of Cr/sub 2/O/sub 3/ coating layer was greater than that of Al/sub 2/O/sub 3/-40%TiO/sub 2/ coating layer. Microscopic observation of worn surfaces was made by SEM. SEM observation showed that the main mechanism of wear for Al/sub 2/O/sub 3/-40%TiO/sub 2/ coating layer was abrasive wear under 50 N. For the case of Al/sub 2/O/sub 3/-40%TiO/sub 2/ coating layer, as the surface cracks perpendicular to sliding direction propagated, the wear debris was generated in wear track. However, the main mechanism of wear for Cr/sub 2/O/sub 3/ coating layer was brittle fracture under 150 N.

$Al_2O_3/SiC$ Hybrid-Composite에서 SiC에 질화물 코팅의 영향 (The Effect of Nitride Coating on SiC Platelet in $Al_2O_3/SiC$ Hybrid-Composite)

  • 이수영;임경호;전병세
    • 한국세라믹학회지
    • /
    • 제34권4호
    • /
    • pp.406-412
    • /
    • 1997
  • Al2O3/SiC hybrid-composite has been fabricated by the conventional powder process. The addition of $\alpha$-Al2O3 as seed particles in the transformation of ${\gamma}$-Al2O3 to $\alpha$-Al2O3 provided a homogeneity of the microstructure. The grain growth of Al2O3 are significantly surpressed by the addition of nano-size SiC particles. Dislocation were produced due to the difference of thermal expansion coefficient between Al2O3 and SiC and piled up on SiC particles in Al2O3 matrix, resulting in transgranular fracture. The high fracture strength of the composite was contributed to the grain refinement and the transgranular fracture mode. The addition of SiC platelets to Al2O3/SiC nano-composite decreased the fracture strength, but increased the fracture toughness. Coated SiC platelets with nitrides such as BN and Si3N4 enhanced fracture toughness much more than non-coated SiC platelets by enhancing crack deflection.

  • PDF

Surface Properties, Friction, Wear Behaviors of the HOVF Coating of T800 Powder and Tensile Bond Strength of the Coating on Ti64

  • Cho, T.Y.;Yoon, J.H.;Joo, Y.K.;Cho, J.Y.;Zhang, S.H.;Kang, J.H.;Chun, H.G.;Kwon, S.C.
    • 한국표면공학회:학술대회논문집
    • /
    • 한국표면공학회 2008년도 추계학술대회 초록집
    • /
    • pp.11-12
    • /
    • 2008
  • Micron-sized Co-alloy T800 powder was coated on Inconel718 (IN718) using high velocity oxygen fuel (HVOF) thermal spraying by the optimal coating process (OCP) determined from the best surface hardness of 16 coatings prepared by Taguchi program. The surface hardness improved 140-160 % from 399 Hv of IN718 to 560-630 Hv by the coating. Porosity of the coating was 1.0-2.7 %, strongly depending on spray parameters. Both friction coefficients (FC) and wear traces (WT) of the coating were smaller than those of IN718 substrate at both $25^{\circ}C$ and $538^{\circ}C$. FC and WT of IN718 and coating decreased with increasing the surface temperature. Tensile bond strength (TBS) and fracture location (FL) of Ti64/T800 were 8,770 psi and near middle of T800 coating respectively. TBS and FL of Ti64/NiCr/T800 were 8,740 psi and near middle of T800 coating respectively. This showed that cohesion of T800 coating was 8,740-8,770 psi, and adhesion of T800 on Ti64 and NiCr was stronger than the cohesion of T800.

  • PDF

플라즈마 용사 열차폐 코팅의 열화에 따른 접착강도 평가 (Evaluation of Bond Strength of Isothermally Aged Plasma Sprayed Thermal Barrier Coating)

  • 김대진;이동훈;구재민;송성진;석창성;김문영
    • 대한기계학회논문집A
    • /
    • 제32권7호
    • /
    • pp.569-575
    • /
    • 2008
  • In this study, disk type of thermal barrier coating system for gas turbine blade was isothermally aged in the furnace changing exposure time and temperature. For each aging condition, bond tests for three samples were conducted for evaluating degradation of adhesive or cohesive strength of thermal barrier coating system. For as-sprayed condition, the location of fracture in the bond test was in the middle of epoxy which have bond strength of 57 MPa. As specimens are degraded by thermal aging, bond strength gradually decreased and the location of failure was also changed from within top coat at the earlier stage of thermal aging to the interface between top coat and TGO at the later stage due to the delamination in the coating.

Friction, Wear and Adhesion of HVOF Coating of Co-alloy Powder

  • Cho, Tong-Yul;Yoon, Jae-Hong;Song, Ki-Oh;Joo, Yun-Kon;Fang, Wei;Zhang, Shihong;Youn, Suk-Jo;Chun, Hui-Gon;Hwang, Soon-Young
    • 한국표면공학회:학술대회논문집
    • /
    • 한국표면공학회 2007년도 추계학술대회 논문집
    • /
    • pp.61-62
    • /
    • 2007
  • HVOF thermal spray coating of micron size Co-alloy powder has been studied for the durability improvement of high velocity spindle (HVS). Optimal coating process of this system for the best surface properties is hydrogen flow rate 75 FMR, oxygen flow rate 38-42 FMR, feed rate 30 g/min at spray distance 5 inch. Friction coefficient (FC) and wear trace (WT) decrease increasing coating surface temperature from 25$^{\circ}$C to 538$^{\circ}$C due to the higher lubricant effects of the oxides at the higher temperature. At the study of adhesion of T800 coating on a light metal alloy Ti-6Al-4V (Ti64) tensile bond strength (TBS) and tensile fracture location (TFL) of Ti64/T800 are 8,740 psi and near middle of T800 coating respectively. This shows that adhesion of Ti64/T800 is higher than the cohesion strength (8,740 psi) of T800 coating. Therefore T800 coating is strongly advisable for the surface coating on HVS such as high speed air-bearing spindle.

  • PDF

Failure Mechanisms of Thermal Barrier Coatings Deposited on Hot Components in Gas Turbine Engines

  • Lee E. Y.;Kim J. H.;Chung S. I.
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2005년도 제24회 춘계학술대회논문집
    • /
    • pp.106-111
    • /
    • 2005
  • Failure mechanisms were investigated for the two layer thermal barrier coatings consisting of NiCrAlY bond coat and $ZrO_2-8wt.\% Y_{2}O_3$ ceramic coating during cyclic oxidation. $Al_{2}O_3$ developed at the ceramic coating/bond coat interface first, followed by the Cr/Ni rich oxides such as $NiCr_{2}O_4 and Ni(Al,Cr)_{2}O_4$ during cyclic oxidation It was observed that the spalling of ceramic coatings took place primarily within the NiCrAlY bond coat oxidation products or at the interface between the bond coat oxidation products and zirconia based ceramic coating or the bond coat. It was also observed that the fracture within these oxidation products occurred with the formation of $Ni(Cr,Al)_{2}O_4$ spinel or Cr/Ni rich oxides. It was therefore concluded that the formation of these oxides was a life-limiting event for the thermal barrier coatings.

  • PDF

Damage Tolerance in Hardly Coated Layer Structure with Modest Elastic Modulus Mismatch

  • Lee, Kee-Sung
    • Journal of Mechanical Science and Technology
    • /
    • 제17권11호
    • /
    • pp.1638-1649
    • /
    • 2003
  • A study is made on the characterization of damage tolerance by spherical indentation in hardly coated layer structure with modest elastic modulus mismatch. A hard silicon nitride is prepared for the coating material and silicon nitride with 5wt% of boron nitride composites for underlayer. Hot pressing to eliminate the effect of interface delamination during the fracture makes strong interfacial bonding. The elastic modulus mismatch between the layers is not only large enough to suppress the surface crack initiation from the coating layer but sufficiently small to prevent the initiation of radial crack from the interface. The strength degradation of the layer structure after sphere contact indentation does not significantly occur, while the degradation of silicon nitride-boron nitride composite is critical at a high load and high number of contacts.

Hertzian Crack Suppression and Damage Tolerance of Silicon Nitride Bilayer

  • Lee, Kee-Sung;Kim, Do-Kyung;Lee, Seung-Kun;Lawn, Brian R.
    • The Korean Journal of Ceramics
    • /
    • 제4권4호
    • /
    • pp.356-362
    • /
    • 1998
  • Hertzian crack suppression phenomena and relatively high damage tolerance were investigated in hard/soft silicon nitride ($Si_3N_4$) bilayers. Coarse $\alpha}-Si_3N_4$ powder was wsed for the hard coating layer and fine $\alpha}-Si_3N_4$ powder was used for the soft substrate layer. The two layers were designed with a strong interface. Hertzian indentation was used to investigate contact fracture and damage tolerance property. Hertzian crack suppression has occurred with increasing applied load and decreasing coating thickness. The crack suppression contributed strength improvement, especially in the bilayers with thinner coatings. Ultimately, the combination of hard coating with soft but tough underlayer improved the damage tolerance of brittle $Si_3N_4$ ceramics.

  • PDF

Failure Mechanisms for Zirconia Based Thermal Barrier Coatings

  • Lee, Eui Y.;Kim, Jong H.
    • The Korean Journal of Ceramics
    • /
    • 제4권4호
    • /
    • pp.340-344
    • /
    • 1998
  • Failure mechanisms were investigated for the two layer thermal barrier coatings consisting of NiCrAlY bond coat and $ZrO_2$-8wt.% $Y_2O_3$ ceramic coating during cyclic oxidation. $Al_2O_3$ developed at the ceramic coating/bond coat interface first, followed by the Cr/Ni rich oxides such as $NiCr_2O_4$ and $Ni(Al, Cr)_2O_4$ during cyclic oxidation. It was observed that the spalling of ceramic coatings took place primarily within the NiCrAlY bond coat oxidation products or at the interface between the bond coat oxidation products and zirconia based ceramic coating or the bond coat. It was also observed that the fracture within these oxidation products occurred with the formation of $Ni(Cr, Al)_2O_4$ spinel or Cr/Ni rich oxides. It was therefore concluded that the formation of these oxides was a life-limiting event for the thermal barrier coatings.

  • PDF