• Title/Summary/Keyword: Coating film

Search Result 1,908, Processing Time 0.031 seconds

Influence of Electrolyte on the Shape and Characteristics of TiO2 during Anodic Oxidation of Titanium (Titanium 양극산화시 TiO2 의 형상 및 특성에 미치는 전해질의 영향)

  • Yeji Choi;Chanyoung Jeong
    • Corrosion Science and Technology
    • /
    • v.22 no.3
    • /
    • pp.193-200
    • /
    • 2023
  • Titanium alloy (grade-4) is commonly used in industrial and medical applications. To improve its corrosion resistance and biocompatibility for medical use, it is necessary to form a titanium oxide film. In this study, the morphology of the oxide film formed by anodizing Ti-grade 4 using different electrolytes was analyzed. Wetting properties before and after surface modification with SAM coating were also observed. Electrolytes used were categorized as A, B, and C. Electrolyte A consisted of 0.3 M oxalic acid and ethylene glycol. Electrolyte B consisted of 0.1 M NH4F and 0.1 M H2O in ethylene glycol. Electrolyte C consisted of 0.07 M NH4F and 1 M H2O in ethylene glycol. Samples B and C exhibited a porous structure, while sample A formed a thickest oxide film with a droplet-like structure. AFM analysis and contact angle measurements showed that sample A with the highest roughness exhibited the best hydrophilicity. After surface modification with SAM coating, it displayed superior hydrophobicity. Despite having the thickest oxide film, sample A showed the lowest insulation resistance due to its irregular structure. On the other hand, sample C with a thick and regular porous oxide film demonstrated the highest insulation resistance.

Characteristics of Bio-Piezoelectric Generator Using Edible Collagen Powder (식용 콜라겐 분말을 적용한 바이오 압전 발전기의 특성)

  • Ha-Young Son;Sang-Shik Park
    • Korean Journal of Materials Research
    • /
    • v.34 no.4
    • /
    • pp.215-222
    • /
    • 2024
  • Because collagen is inherently piezoelectric, research is being actively conducted to utilize it to harvest energy. In this study, a collagen solution was prepared using edible low-molecular-weight peptide collagen powder, and collagen films were fabricated using a dip coating method. The collagen films prepared by dip coating showed a smooth surface without defects such as pinholes or cracks. Dehydrothermal treatment of the collagen films was performed to induce a stable molecular structure through cross-linking. The collagen film subjected to dehydrothermal treatment at 110 ℃ for 24 h showed a thickness reduction rate of 19 %. Analysis of the collagen films showed that the crystallinity of the collagen film improved by about 7.9 % after dehydrothermal treatment. A collagen film-based piezoelectric nanogenerator showed output characteristics of approximately 13.7 V and 1.4 ㎂ in a pressure test of 120 N. The generator showed a maximum power density of about 2.91 mW/m2 and an output voltage of about 8~19 V during various human body movements such as finger tapping. The collagen film-based piezoelectric generator showed improved output performance with improved crystallinity and piezoelectricity after dehydrothermal treatment.

Preparation and Electrical Properties of Lead Zirconate Titanate Thick Films Fabricated by Screen-Printing Method (스크린 프린팅으로 제작된 $Pb(Zr,\;Ti)O_3$ 후막의 제작과 전기적 특성)

  • Park, Sang-Man;Lee, Sung-Gap
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.55 no.9
    • /
    • pp.429-433
    • /
    • 2006
  • PZT(80/0) powder was prepared by a sol-gel method and PZT thick films were fabricated by the screen-printing method on the alumina substrates. The coating and drying procedure was repeated 4 times. And then the PZT(20/80) precusor solution was spin-coated on the PZT thick films. A concentration of a coating solution was 0.5mol/L and the number of coating was varied from 0 to 6. The porosity decreased and the grain size increased with increasing the number of coatings. The thickness of the PZT-6(6: number of coatings) films was about $60{\mu}m$. The relative dielectric constant increased and the dielectric loss decreased with increasing the number of PZT(20/80) sol coatings. The relative dielectric constant and dielectric loss of the PZT-6 thick film were 275 and 3.5%, respectively. The remanent polarization, coercive field and breakdown strength of the PZT-6 film were $19.8{\mu}C/cm^2$, 13.7kV/cm and 130kV/cm, respectively.

Fabrication of Fine Organic Thin-Film Stripes Using a Hydrophobic Needle (소수성 Needle을 이용한 미세 유기 박막 Stripe 제작)

  • Kim, Jongmyeong;Lee, Jinyoung;Shin, Dongkyun;Park, Jongwoon
    • Journal of the Semiconductor & Display Technology
    • /
    • v.19 no.1
    • /
    • pp.73-78
    • /
    • 2020
  • There appears lateral capillary force in a hydrophilic flat needle employed for the fabrication of fine organic thin-film stripes, bringing in an increase of the stripe width. It also causes the stripe thickness to increase with increasing coating speed, which is hardly observed in a normal coating process. Through computational fluid dynamics (CFD) simulations, we demonstrate that the lateral capillary flow can be substantially suppressed by increasing the contact angle of the needle end. Based on the simulation results, we have coated the outer surface of the flat needle with a hydrophobic material (polytetrafluoroethylene (PTFE) with the water contact angle of 104°). Using such a hydrophobic needle, we can suppress the lateral capillary flow of an aqueous poly(3,4-ethylenedioxythiophene): poly(4-styrenesulfonate) (PEDOT:PSS) to a great extent, rendering the stripe narrow (63 ㎛ at 30 mm/s). Consequently, the stripe thickness is decreased as the coating speed increases. To demonstrate its applicability to solution-processable organic light-emitting diodes (OLEDs), we have also fabricated OLED with the fine PEDOT: PSS stripe and observed the strong light-emitting stripe with the width of about 68 ㎛.

Evaluation of Micro-Tensile Properties for Nano-coating Material TiN (나노 코팅재 TiN 의 마이크로 인장 특성 평가)

  • Huh, Yong-Hak;Kim, Dong-Iel;Hahn, Jun-Hee;Kim, Gwang-Seok;Yeon, Soon-Chang;Kim, Yong-Hyub
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.240-245
    • /
    • 2004
  • Tensile properties of hard coating material, TiN, were evaluated using micro-tensile testing system. TiN has been known as a hard coating material commonly used today. Micro-tensile testing system consisted of a micro tensile loading system and a micro-ESPI(Electronic Speckle Pattern Interferometry) system. Micro-tensile loading system had a maximum load capacity of 500mN and a resolution of 4.5 nm in stroke. TiN thin film $1{\mu}m$ thick was deposited on the Si wafer pre-deposited of $Si_3N_4$ film substrate by the closed field unbalanced magnetron sputtering (CFUBMS) process. Three kinds of micro-tensile specimen with the respective width of $50{\mu}m$, $100{\mu}m$ and $500{\mu}m$ were fabricated by MEMS process. The mechanical properties including tensile strength and elastic modulus were determined using the micro-tensile testing system and compared by those obtained by nano-indentation

  • PDF

Anode-supported Type SOFCs based on Novel Low Temperature Ceramic Coating Process

  • Choi, Jong-Jin;Ahn, Cheol-Woo;Kim, Jong-Woo;Ryu, Jungho;Hahn, Byung-Dong;Yoon, Woon-Ha;Park, Dong-Soo
    • Journal of the Korean Ceramic Society
    • /
    • v.52 no.5
    • /
    • pp.338-343
    • /
    • 2015
  • To prevent an interfacial reaction between the anode and the electrolyte layer during the conventional high-temperature co-firing process, an anode-supported type cell with a thin-film electrolyte was fabricated by low-temperature ceramic thick film coating process. Ni-GDC cermet composite was used as the anode material and YSZ was used as the electrolyte material. Open circuit voltage and maximum power density were found to strongly depend on the surface uniformity of the anode functional layer. By optimizing the microstructure of the anode functional layer, the open circuit voltage and maximum powder density of the cell increased to 1.11 V and $1.35W/cm^2$, respectively, at $750^{\circ}C$. When a GDC barrier layer was applied between the YSZ electrolyte and the LSCF cathode, the cell showed good stability, with almost no degradation up to 100 h. Anode-supported type SOFCs with high performance and good stability were fabricated using a coating process.

Coating System for High Quality Ferromagnetic Thin Films (고품위 자성체 박막 코팅 시스템)

  • Kim, Gi-Bum;Hwang, Yoon-Sik;Kim, Yeong-Shik;Park, Jang-Sick;Park, Jae-Bum
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.231-232
    • /
    • 2007
  • Nickel oxide thin films were deposited by the DC magnetron reactive sputtering process under the conditions such as various oxygen flow rates(0, 3, 6, 8, 10 sccm) with constant 33 sccm argon flow rate for the sputtering time of 40 second with the power of 0.3 kW. Sheet resistances were measured by the four point probes. In order to observe discharge voltage characteristics according to the oxygen flow rates, the sputtering processes were performed under the powers of 0.2kW and 0.3kW. The feasibility of the coating system for high quality ferromagnetic thin films was tested through the electromagnetic simulation and the thin film thickness measurement from the experiment. It was shown that a discharge voltage was decreased under the low power and low oxygen flow rate, since the oxygen was quickly saturated on nickel target surface. The sheet resistance was increased as oxygen flow rate increased. The film thickness deposited by the coating system for ferromagnetic target was improved approximately 10% in comparison with previous coating systems.

  • PDF

Effect of Tin Coating on the High Speed Seam Weldability of Thn Gage Sheet Steels (박판 강재의 고속 심 용접성에 미치는 Sn 도금의 영향)

  • 김기철;이목영
    • Journal of Welding and Joining
    • /
    • v.16 no.5
    • /
    • pp.86-92
    • /
    • 1998
  • High speed wire seam weldability of tin coated thin gage sheet steels was investigated. Thickness and coating weight ranges of the test materials were 0.21~0.35mm and 1.1/1.1~2.8/11.2g/$m^2$, respectively. Test results indicated that the surface roughness value, Rz decreased as increasing the coating weight. The Rz was thought to be one of the important factors to influence the optimum welding condition range, $\triangle$Q. The $\triangle$Q showed close relationship with welding conditions such as welding pressure and travel speed. Higher welding pressure widened the $\triangle$Q while higher travel speed reduced the $\triangle$Q value. Results also demonstrated that tin coating weight should be optimized based on the weldability or the serviceability after welding. At th HAZ of sheet materials with thinner coating layer, tin depleted zone was produced since molten film of the coating material on the base metal agglomerated by the surface tension, which could result in reducing the corrosion resistance of the HAZ in the service environment.

  • PDF

Characteristics of Re-Jr Coating Thin Film on Tungsten Carbide Core Surface (Tungsten Carbide 코어 표면에 코팅 된 Re-Ir 박막 특성)

  • Lee, Ho-Shik;Park, Yong-Pil;Cheon, Min-Woo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.06a
    • /
    • pp.139-139
    • /
    • 2010
  • Rhenium-Iridium(Re-Ir) thin films were deposited onto the tungsten carbide(WC) molding core by sputtering system. The Re-Ir thin films on tungsten carbide molding core were analyzed by scanning electron microscope(SEM) and surface roughness. The Re-Ir coating technique has been intensive efforts in the field of coating process because the coating technique and process have been their feature, like hardness, high elasticity, adrasion resistance and mechanical stability and also have been applied widely the industrial and biomedical areas. In this report, tungsten carbide(WC) molding core was manufactures using high performance precision machining and the efforts of Re-Ir coating on the surface roughness.

  • PDF

A Study on the Tribological Characteristics of Thermally Evaporated Silver Films Assisted by Atomic Mixing (원자혼합법으로 증착된 은 박막의 트라이볼로지적 특성에 관한연구)

  • 양승호;공호성;윤희성
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2001.11a
    • /
    • pp.27-34
    • /
    • 2001
  • A new functionally gradient metal coating method using an atomic mixing technique was developed. In this work the effect of silver atomic mixing on the tribological characteristics of silver$.$ films. has been investigated experimentally. Atomic mixing was implemented by using the, bombardment .of accelerated Ar ions during the thermal evaporation coating process of silver films. Experiments were performed in dry conditions using a ball-on-disk test rig at a load range of 19.6 mN - 17.64 N and a sliding velocity of 20 mm/sec. Results showed that the life of functionally gradient silver coating was enhanced about 100 times more than that of thermally evaporated silver coating and 2 times more than that of IBAD silver coating. The functionally gradient. film also showed low friction and wear compared to those of the evaporated silver and

  • PDF