• Title/Summary/Keyword: Coating density

Search Result 655, Processing Time 0.023 seconds

A Study on the Corrosion Control of Glass Flake Lining for Mild Steel in Marine Environment (해양환경 중에서 Glass Flake 라이닝 강재의 부식방지에 관한 연구)

  • Lim, Uh-Joh;Kim, Seong-Hoon
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.12 no.2
    • /
    • pp.164-175
    • /
    • 2000
  • Port facilities and marine structures used in marine environment were encountered to corrosion damages because of the influence of Cl-. Generally, to protect these accidents, anti-corrosion paint and epoxy coating have been used. But they were still remained erosion-corrosion damage like impingement erosion, cavitation erosion and deposit attack. It is necessary to develope the new composite lining material in order to protective those corrosion damages. In this paper, polyester glass flake, vinylester glass flake lining and epoxy coating for SS400 were investigated by the electrochemical polarization test and the impingement-cavitation erosion test for corrosion behaviour under the sea water. The main results obtained are as follows ; 1) Epoxy coating appear potentiodynamic polarization behaviour, but polyester glass flake and vinylester glass flake lining do not appear potentiodynamic polarization behaviour. 2) Open circuit potential of polyester glass flake lining is more noble than that of epoxy coating and corrosion current density of polyester glass flake lining is less drained than that of epoxy coating in sea water. 3) Open circuit potential of vinylester glass flake lining is more noble than that of polyester glass flake lining and corrosion current density of vinylester glass flake lining is less drained than that of polyester glass flake lining in the sea water.

  • PDF

Polarization Characteristics of Heat-treated Ni-based Self-flux Alloy Coating in Alkaline Solution (후열처리한 니켈기 자융성 합금 코팅의 알칼리 용액에서의 분극특성)

  • Kim, Tea-Yong;Kim, Jea-Dong;Kim, Yeong-Sik
    • Journal of Power System Engineering
    • /
    • v.18 no.2
    • /
    • pp.37-42
    • /
    • 2014
  • The purpose of this paper is to investigate polarization characteristics of heat-treated Ni-based self-flux alloy coating in alkaline solution. Ni-based self-flux alloy powder was sprayed to a steel substrate using flame spray process, and heat treatments were performed in a vacuum furnace at $800^{\circ}C$, $900^{\circ}C$, $1000^{\circ}C$ and $1100^{\circ}C$. After heat treatments, corrosion tests were carried out using potentiostat/galvanostat at solution with pH 8 and pH 13. Corrosion potential(Ecorr) and corrosion current density(Icorr) could be analyzed from polarization curve. Anticorrosive effect of heat-treated coating at solution with pH 8 was relatively greater than at solution with pH 13. Heat-treated coating at $1100^{\circ}C$ showed the greatest anti-corrosion characteristics in alkaline solution.

Method to Increase the Surface Area of Titania Films and Its Effects on the Performance of Dye-Sensitized Solar Cells

  • Ko, Young-Seon;Kim, Min-Hye;Kwon, Young-Uk
    • Bulletin of the Korean Chemical Society
    • /
    • v.29 no.2
    • /
    • pp.463-466
    • /
    • 2008
  • We report a method to increase the surface area of the titania films used as the anodes of dye-sensitized solar cells (DSSCs) by applying additional titania-coating. The modification was achieved by spin-coating a coating solution that contained a surfactant with a titania source onto the titania electrodes, followed by calcination. Previous similar attempts without a surfactant all reported decreased surface areas. We fabricated DSSCs by using the modified titania films as the anode and measured their performances. The increased surface area increased the amount of adsorbed dyes, which resulted in increased current densities. At the same time, the titania-coating increased both the open-circuit voltage and the current density by reducing the charge-recombination rates of the injected electrons, similar to the results of literatures. Therefore, our method shows an additional mechanism to increase the current density of DSSCs in addition to the other mechanisms of surface modifications with titania-coatings.

Optimization of selective laser sintering process parameter for Fe-Ni-Cr coating fabrication (Fe-Ni-Cr 코팅층 형성을 위한 SLS 공정변수의 최적화)

  • Joo, B.D.;Jang, J.H.;Yim, H.S.;Son, Y.M.;Moon, Y.H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.05a
    • /
    • pp.278-281
    • /
    • 2009
  • Selective laser sintering(SLS), a kind of rapid prototyping technology, can provide a process to form many types of coatings. Coated layers by selective laser melting are highly influenced by substrate, powder and laser parameters such as laser power, scan rate, fill spacing and layer thickness. Therefore an attempt to fabricate Fe-Ni-Cr coating on AISI H13 tool steel has been performed by selective laser sintering. In this study, Fe-Ni-Cr coating was produced by experimental facilities consisting of a 200W fiber laser which can be focused to 0.08mm and atmospheric chamber which can control atmospheric pressure with Ar. With power increase or energy density decrease, line width was decreased and line surface quality was improved with energy density increase. Surface quality of coating layer was improved with fill spacing optimization or layer thickness decrease.

  • PDF

Study of the Al-coating on the STS 316L Stainless Steel by Pulse Plating in the Molten Salts at Room Temperature (펄스 도금법을 이용한 STS 316L 스테인리스강 상의 저온 염욕 알루미늄 코팅에 관한 연구)

  • 정세진;조계현
    • Journal of the Korean institute of surface engineering
    • /
    • v.35 no.1
    • /
    • pp.17-32
    • /
    • 2002
  • Electroplating methods by molten salts and non-aqueous melts were employed for aluminium coating on STS 316L stainless steel. After coated with Ni or non-coated surface on stainless steel, Al pulse plating was carried out in two different types of electrolytes at room temperature. The Al layer from $AlCl_3$-TMPAC melts could not obtain appreciable thickness for engineering application due to chemical reactions between deposits and moisture of air. However, The Al coating by pulse plating in the Ethylbenzene-Toluene-$AlBr_3$ systems was found to be solid coating layer with a few $\mu\textrm{m}$ scale. The conductivity of Ethylbenzene-Toluene-$AlBr_3$ electrolyte was as functions of time and agitation. By seven days exposure after mixing of the electrolyte, Al-deposited layer shows uniform and near by pore-free with high current density (higher than 30mA/$\textrm{cm}^2$). The roughness and imperfection of coating layer were decreased with a increasing agitation speed. It was found that the optimum condition for the Al pulse plating on the 316L stainless steel was a 400mA peak current, duty cycle, $t_{on}$ $t_{ off}$=3ms/1ms, and a current density of 30mA/$\textrm{cm}^2$.

Development of Hybrid Sol-Gel Coating to Prevent Corrosion of Magnesium Alloys (마그네슘 합금의 방청을 위한 하이브리드 졸-겔 코팅제의 개발)

  • Lee, Dong Uk;Kim, Young Hoon;Moon, Myung Jun
    • Corrosion Science and Technology
    • /
    • v.17 no.1
    • /
    • pp.30-36
    • /
    • 2018
  • The high rate of corrosion of magnesium alloys makes it limited for industrial applications. Therefore, surface treatment is required to enhance their corrosion resistance. In our study, a chemical conversion coating for protecting the corrosion of the magnesium alloy, AZ31B, was prepared by using a phosphate-permanganate solution. The chemical conversion coating had a limited protection ability due to defects arising from cracks and pores in the coating layer. The sol-gel coating was prepared by using trimethoxymethylsilane (MTMS) and 3-glycidoxypropyltrimethoxysilane (GPTMS) as precursors, and aluminum acetyl acetonate as a ring opening agent. The corrosion protection properties of sol-gel and conversion coatings in 0.35wt% NaCl solution were measured by the electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization test. The EIS results indicated that the resistance of the chemical conversion coating with the sol-gel coating was significantly improved through the sol-gel sealed phosphate-permanganate conversion coating. The results of the potentiodynamic polarization test revealed that the sol-gel coating decreased the corrosion current density ($I_{corr}$). The SEM image showed that the sol-gel coating sealed conversion coating and improved corrosion protection.

Photovoltaic Characteristics of Low-density Concentration GaAs Solar Cells with/without Anti-reflective Coating

  • Noh, Sam Kyu;Kim, Jong Soo;Kim, Jin Soo;Yu, Jae Su
    • Applied Science and Convergence Technology
    • /
    • v.23 no.1
    • /
    • pp.27-33
    • /
    • 2014
  • We have studied photovoltaic characteristics of single-junction GaAs solar cells with/without an $MgF_2/ZnS$ anti-reflective coating (ARC) illuminated by low-density concentration (<10 suns). By the ARC deposition, the short-circuit current density ($J_{SC}$) and the fill factor (FF) are increased by $5mA/cm^2$ and 5% at a standard illumination (1 sun), respectively, and the resulted conversion efficiency is enhanced by 45%. In contrast with the cell with no ARC showing a rapid degradation with increasing concentration power, the efficiency of ARC-deposited cell remains almost constant as ($17.7{\pm}0.3$)% regardless of the concentration. It informs that ARC treatment is very effective in GaAs concentrator solar cells.

Effects of Coating Materials on Fluidity and Temperature Loss of Molten Metals from Runner Systems in Full Moulds.

  • Cho, Nam-Don;Kim, Yong-Hyun;Choi, Jung-Kwon
    • Journal of Korea Foundry Society
    • /
    • v.10 no.1
    • /
    • pp.31-42
    • /
    • 1990
  • The full mould casting process in one of the newly developed techniques which has many advantages. Unbonded sand mould has been prepared for the major mould and $CO^2$ gas mould has been used occasionally for comparison. Patterns were built up with expanded polystyrene and coated with three different materials. Silica, graphite and zircon were used for the coating layer. The effects on fluidity and temperature loss of molten metals were investigated. The molten metals were Al-5% Si alloy, Cu-30% Zn alloy and gray iron of approximately 4.0% of carbon equivalent. Experimental variables were runner section area, superheat, sprue height, coating materials, coating thickness and apparent density of EPS pattern. The effects of coating materials on fluidity and temperature loss of the molten metals during transient pouring are summarized as follows : As runner section area, superheat and sprue height increased, fluidity increased. Temperature loss decreased as runner section area and sprue height increased. However, reversed effects were observed in the case of superheat increment. The coating materials decreased the fluidity of each alloy in the order of silica, graphite and zircon. Zircon brought to the highest temperature loss among the coating materials used. The fluidity increased in the order gray iron, Cu-30% Zn and Al-5% Si alloy while temperature loss in the reverse order. Especially in case of reduced pressure process, the fluidity was increased apparently. Al-5% Si alloy showed the lowest temperature loss among the alloys. The increment of the apparent density of EPS pattern resulted in the fluidity decrease and temperature loss increase. The relation between fluidity and temperature loss of each alloy can be expressed by the following equation within the coating thickness limit of 0.5-1.5㎜. F^*={\frac{a}{T^*-b}}-c$ where, $F^*$ : fluidity in the Full mould, $T^*$ : temperature loss in the mould. a : parameter for full mould. b, c : constants.

  • PDF

Technology of selective absorber coatings on solar collectors using black chromium+3 sulfate acid on substrates (흑색 황산3가크롬을 이용한 태양열 흡열판 선택흡수막 도금기술)

  • Ohm, Tae-In;Yeo, Woon-Tack;Kim, Dong-Chan
    • Journal of the Korean Solar Energy Society
    • /
    • v.33 no.3
    • /
    • pp.27-35
    • /
    • 2013
  • One of the most important factors that have a large influence on performance of the solar water heater system is performance of the solar collector, more detailedly, coating technology on the surface of the solar collector, which can provide high solar absorptance and low emittance. The core of the coating technology is to coat solar selective surfaces. In this study, various performance experiments are carried out using $Cr_2(SO_4)_3{\cdot}15H_2O$ coating technology. Here, IGBT(Insulated Gate Bipolar Transistor) of 5000A-15V was used as the surface processing rectifier which can stably output power and also can control voltage and current. The plating solution mainly contains black chrome$^{+3}$ concentration, H-y Conductivity, N-u Complex, NF Additive and NC-2 Wetter. Before applying the black chrome coating on the copper plate, optimal conditions are provided by using various preprocessing methods such as removal of fat, activation, electrolytic polishing, nickel strike, copper sulfate plating and bright neckel plating, and then the automatic continuous coating experiment are performed according to plating time and cathode current density. In the experiment, after the removal of fat, chemical polishing, nickel strike and activation processes as the preprocessing methods, the black chrome coating was performed in a plate solution temperature of $28^{\circ}C$ and a cathode current density of $18A/cm^2$ for 90 seconds. The thickness of chrome and nickel on the coated plate is $0.389{\mu}m$, $159{\mu}m$ respectively. As a result of the coating experiment, it showed the most excellent performance having a high solar absorptance of 98% and a low emittance of $5{\pm}1%$ when the black chrome surface had a thickness of $0.398{\mu}m$.

Characteristic ependences of High Power Semiconductor Laser on AR Coating (AR Coating에 따른 고출력 반도체 레이저의 특성변화)

  • 오윤경;곽계달
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.32A no.11
    • /
    • pp.29-34
    • /
    • 1995
  • Mirror coating is applied to laser facets to improve properties of edge emitting laser diodes. In this experiment, InGaAsP/GaAs high power laser diodes were studied with respect to different degrees of anti-reflective coating. Sputterred $Al_{2}$O$_{3}$ was used as the coating material and the HR coating was kept constant at 90%. Threshold current density, differential quantum efficiency, emission wavelength and the operating current at 500mW were measured for a range of AR coating and compared with theoretically calculated values; that showed good agreements. Precise wavelength control is important for laser diodes for solid state pumping because of small absorption bandwidth. In addition, since these lasers operate under CW condition, a lowest possible operating current for a given power is desired in order to minimize the heat produced. From the results of this experiment, we were able to obtain a optimum range of AR coatings for minimum operating current. The wavelength can be varied up to 4nm within this range.

  • PDF