• Title/Summary/Keyword: Coating Gap

Search Result 168, Processing Time 0.048 seconds

Computer Simulation of Coating Behavior Including Air for Various Coater Geometries and Operational Conditions (코팅 공정에서 공기를 고려한 코터형상 및 운전조건에 따른 코팅현상 해석)

  • Kim, H.Y.;Lyu, M.Y.;Choi, J.G.
    • Transactions of Materials Processing
    • /
    • v.18 no.2
    • /
    • pp.156-159
    • /
    • 2009
  • Slot coating has been wide spread in photo-resist coating on the glass for liquid crystal display. Die in slot coater consists of manifold and land. Material comes in inlet of the die and flow into the manifold and then flow out through the land. The coating thickness variations along the die length depend upon inside of die design such as manifold and die land. However the coating thickness variations along the moving direction(coating direction) of the coater depend upon the operational conditions of coater as well as die lip design. The coating behaviors including atmospheric air have been investigated in this study. Die geometries considered in this study were nozzle gap and length of the die lip. Coating gap and coating speed were the variables fur coating operational conditions. When the nozzle gap and length of die lip increased climbing effect of PR on the downstream die lip was reduced. Subsequently uniformity of coating thickness improved. Uniformity of coating thickness also enhanced as coating gap and coater speed increased. The uniformity of coating gap was related to the velocity vector distributions on the coating surface.

Measurement Feasibility Assessment of Coating Film Thickness using Dual Sensor (이중센서를 이용한 코팅막 두께 측정 가능성 평가)

  • 김주현;김성렬;김정욱;김화영;안중환
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.78-81
    • /
    • 2004
  • A technical performance of the coating depends greatly on the thickness of painting film or coating film. Therefore the confirmed report of the technique to measure accurately is essential to the coating film thickness for the assessment about a coating quality performance. In this paper, two gap sensors - eddy current gap sensor and capacitance gap sensor - which has a different operating principle were used to measure the thickness of a nonmagnetic substance coating film such as paint, enamel or ceramic that was coated on the metallic material. A capacitance gap sensor was used to measure the distance between the sensor head and a coating film and an eddy current gap sensor to measure the distance between the sensor head and a base metal. Then the thickness of a coating film was obtained by the difference of two measurement value. At this result, the suggested dual sensor can measure an arbitrary film thickness to be coated on a base metal as the measurement value of coating thickness exists accurately within the 2% error.

  • PDF

Coating Properties of a TPD Organic Hole-transporting Layer Deposited using a Continuous slot-die Coating Method (연속 slot-die 코팅법을 이용한 TPD 유기 정공수송층의 코팅 특성 분석)

  • Chung, Kook Chae;Kim, Young Kuk;Choi, Chul Jin
    • Korean Journal of Metals and Materials
    • /
    • v.48 no.4
    • /
    • pp.363-368
    • /
    • 2010
  • N,N'-diphenyl-N,N'-bis(3-methylphenyl)1-1' biphenyl-4,4'-diamine (TPD) hole-transporting layers were deposited using a continuous slot-die coating method on ITO/PET flexible substrates. It is crucial that the substrates have a very smooth surface with a RMS roughness of less than 2 nm for the deposition of semiconductor nanocrystals or Quantum Dots. The parameters of the slot-die coating, including the solution concentration of the TPD, the gap between the slot-die and the substrates, and the coating speed were controlled in these experiments. To obtain full coverage of the TPD films on the ITO/PET substrates (40 mm wide and several meters long), the injection rates of the TPD solution were increased proportional to the coating speed of the flexible substrates. Additionally, the injection rates must be increased as the gap distance changes from 400 to 600 ${\mu}m$ at the same coating speed. A RMS surface roughness of less than 2 nm was obtained, in contrast to bare ITO/PET substrates, at 13 nm, as the coating speed and gap distance increased.

Dynamics and Instability of a Polymeric Paint in Roll Coating Process for Automotive Pre-coating Application (자동차 선도장을 위한 롤코팅 공정에서 고분자 도료의 동적 거동 및 불안정성)

  • Kim, Jin-Ho;Lee, In-Jun;Noh, Seung-Man;Kang, Choong-Yeol;Nam, Joon-Hyun;Jung, Hyun-Wook;Park, Jong-Myung
    • Polymer(Korea)
    • /
    • v.35 no.6
    • /
    • pp.574-579
    • /
    • 2011
  • 3-Roll coating process as a key application technology for manufacturing automotive pre-painted metal-sheets has been studied. The 3-Roll coating system for this study consists of pick-up roll for picking up and distributing coating liquid from the reservoir, metering roll to properly meter coating liquid in metering gap regime, and applicator roll for directly transferring liquid into metal-sheet surface. Flow dynamics and operable coating windows of a polymeric paint (primer) with shear-thinning rheological property have been correlated with processing parameters such as speed ratio and metering gap between pick-up and metering rolls. In the uniform coating regime, dry coating thickness increased with increasing metering gap or decreasing speed ratio. Ribbing and cascade instabilities were observed in low speed and high speed ratio conditions, respectively. It is revealed that lower speed ratio makes severity and wavelength of the ribbing increase, aggravating flow instability in coating systems.

High-Precision Slot-Die Coating Machine for Thin Films of Flexible Display (플렉시블 디스플레이용 박막 도포를 위한 초정밀 슬롯다이 코팅장비)

  • Choi, Young-Man;Lee, Seung-Hyun;Jo, Jeongdai
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.31 no.6
    • /
    • pp.491-495
    • /
    • 2014
  • We developed a compact high-precision slot-die coating machine for thin-film deposition on a flexible substrate. For smooth and precise coating, air-bearing and linear motor system were employed to minimize velocity ripple. The gap control mechanism is specially designed to have repeatability of gap between nozzle and substrate under 1 ${\mu}m$. Due to extremely precise gap control, the machine can coat thin-films down to 50 nm with $200mm{\times}100mm$ size. A thin film of Ag nano-particle ink is coated for demonstration.

Parameter Analysis for the Lateral Thickness of the Coated Layer to Improve Product Quality in Large Area Roll-to-Roll Slot-Die Coating Process (대면적 롤투롤 슬롯-다이 코팅의 횡 방향 두께 품질 개선을 위한 공정 파라미터 분석)

  • Park, Janghoon;Lee, Changwoo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.32 no.2
    • /
    • pp.159-166
    • /
    • 2015
  • Slot-die coating is well known technique to guarantee a uniformly coated layer and is compatible with roll-to-roll process. In actual roll-to-roll slot-die coating process, the lateral difference of coated layer thickness is observed. An experimental study was performed to improve the coating quality. Coating speed and coating gap were selected as the experimental factors. A full factorial, statistical method was conducted to optimize the process conditions. Based on the results of repeated experiment, the lowest deviation of lateral thickness (700 nm, <10%) was achieved at 10 m/min coating speed and $300{\mu}m$ coating gap. This result has significance because such optimized process guideline can be utilized with all process improvement in various coating applications.

Fabrication of Fine PEDOT:PSS Stripes Using Needle Coating (Needle 코팅을 이용한 미세 PEDOT:PSS 스트라이프 제작)

  • Lee, Jinyoung;Park, Jongwoon
    • Journal of the Semiconductor & Display Technology
    • /
    • v.18 no.3
    • /
    • pp.100-104
    • /
    • 2019
  • We have investigated the feasibility of fabricating fine stripes using needle coating for potential applications in solution-processed organic light-emitting diodes (OLEDs). To this end, we have employed an aqueous poly(3,4-ethylenedioxythiophene):poly(4-styrenesulfonate) (PEDOT:PSS) solution that has been widely used as a hole injection layer (HIL) of OLEDs and performed needle coatings by varying the process parameters such as the coating gap and coating speed. As expected, the stripe width is reduced with increasing coating speed. However, the central thickness of the stripe is rather increased as the coating speed increases, which is different from other coating processes such as slot-die and blade coatings. It is due to the fact that the meniscus formed between the needle tip and the substrate varies depending sensitively on the coating speed. It is also found that the stripe width and thickness are reduced with increasing coating gap. To demonstrate its applicability to OLEDs, we have fabricated a red OLED stripe and obtained light emission with the width of about 90㎛.

Optimization of Alumina Tape Casting Process for Building Big Data (빅데이터 구축을 위한 알루미나 테이프 캐스팅 공정 최적화)

  • Kim, Dong Ha;Kim, Shi Yeon;Lee, Joo Sung;Yeo, Dong-Hun;Shin, Hyo-Soon;Yoon, Sang-Ok
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.32 no.6
    • /
    • pp.483-489
    • /
    • 2019
  • For machine learning techniques, a large amount of high-quality material property data should be accumulated. In this study, several data for an alumina tape casting process were produced with the variables of slurry viscosity, gap size, and coating speed. The alumina tapes were manufactured in the range of 1,000~6,000 cps for slurry viscosity, $300{\sim}1,000{\mu}m$ for gap size, and 0.5~2.0 m/min for coating speed. As a result, the lower the viscosity, coating speed, and gap size, the more pore-free tapes could be manufactured. The viscosity of the slurry limited the minimum thickness of the tape. Green sheets with high packing density were manufactured from the slurry of 100~6,000 cps slurry viscosity, coating speed of 0.5 m/min, and a $300{\sim}500{\mu}m$ gap size.

Design of an Antireflection Coating for High-efficiency Superconducting Nanowire Single-photon Detectors

  • Choi, Jiman;Choi, Gahyun;Lee, Sun Kyung;Park, Kibog;Song, Woon;Lee, Dong-Hoon;Chong, Yonuk
    • Current Optics and Photonics
    • /
    • v.5 no.4
    • /
    • pp.375-383
    • /
    • 2021
  • We present a simulation method to design antireflection coating (ARCs) for fiber-coupled superconducting nanowire single-photon detectors. Using a finite-element method, the absorptance of the nanowire is calculated for a defined unit-cell structure consisting of a fiber, ARC layer, nanowire absorber, distributed Bragg reflector (DBR) mirror, and air gap. We develop a method to evaluate the uncertainty in absorptance due to the uncontrollable parameter of air-gap distance. The validity of the simulation method is tested by comparison to an experimental realization for a case of single-layer ARC, which results in good agreement. We show finally a double-layer ARC design optimized for a system detection efficiency of higher than 95%, with a reduced uncertainty due to the air-gap distance.

Smooth and uniform coated films on flexible substrates by optimization of slot-die process parameters

  • Jeong, Guk-Chae;Jeong, Tae-Jeong;Kim, Yeong-Guk;Choe, Cheol-Jin
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.179-179
    • /
    • 2009
  • For the deposition of the semiconductor nanocrystals or quantum dots, it is required to have the substrates with smooth surface roughness. Slot-die coating method wad adopted and optimized varying the processing parameters like coating speed, gap distance, solution concentration, etc to get the smooth coated films on flexible substrates. The coating speed in slot-die method was varied from 1 m/min to 2.5 m/min focusing especially on its industrial usage. The gap distance between the substrate surface and slot-die lip was changed also to control mainly the thickness of coated films.

  • PDF